Breaking taboos in sanitation - it's all about beneficiation

Kartik Chandran Columbia University

Dealing with the sanitation nexus: The need for disruption SIWI World Water Week, August 6th, 2017

Brief overview of biological sewage treatment

	Energy consumed annually (tera tons oe)	Energy consumed annually for water (assuming 3%, tera tons oe
USA	2.4	0.07
Ghana	0.01	?

The potential for beneficiation and recovery

- Distributed (networked) treatment in NY
- Flow: 1.2 billion gallons per day
 - 1860 tons of organic carbon per day
 - 280 tons of N(-III) per day
 - 60 tons of P(+V) per day

Energy self-sufficiency in sanitation and wastewater treatment?

Energy present	Energy needed
~ 2500 kWh/MG	~2500 kWh/MG

- Assuming 34% conversion of organic matter to methane and electricity
- Assuming 'conventional' BNR
- Can 'import' carbon
 - Not at the expense of excessive nutrient discharges

Shifting to Engineered Resource Recovery from 'Waste' Streams

Potential for C-recovery is immense, but...

Biofuels

Commercial chemicals

... needs to address a higher objective

Internal use of VFA for enhanced BNR Dual-Phase Digestion and Fermentation of AS

PDS fermentation and storage at 26th Ward WPCP in New York City, 2002

- Fermentation of PDS to produce VFA
 - Used mainly for denitrification
 - Kinetics higher than MeOH

Lipid Production from 'waste'organics

Organic waste Anaerobic fermentation to produce volatile fatty acids (VFA)

Convert VFA to lipids

Harvest and extract lipids

Convert lipids to ...

From Greenhouse Gas to Green Fuel

• Upcycling CH₄ to chemicals for 'internal' use

Taher and Chandran, ES&T, 2013

De-centralized infrastructure in future cities

water +x

• Scaling down recovery of water, energy and nutrients

~350 new inventions from Columbia research each year Columbia → Technology -Ventures 100+ licenses & options 20+ start-up companies Millions in licensing revenue

+

<u>a</u>

Advance H2O

Acknowledgements

Bill & Melinda Gates Foundation, National Science Foundation, NYSERDA, WE&RF Paul Busch Award Shashwat Vajpeyi, Justin Shih, Ato Fanyin Martin, Edris Taher, Yu-Chen Su, Young Lee

Linking resource recovery to other challenges

Food security	Food security	Food security
Technology and engineering	Technology and engineering	Technology and engineering
Recover C-energy	Recover C-energy	Recover C-energy
Recover P	Recover P	Recover P
Recover N	Recover N	Recover N
Disinfection	Disinfection	Disinfection

Potential for C-recovery is immense, but...

... needs to address a higher objective

