World Water Week Stockholm, 27 August – 1 September, 2017

Development of a Sanitation Safety Plan for peri-urban areas, Tanzania

MARTA DOMINI, Ph.D., Guenter Langergraber, Sabrina Sorlini, Samson Maswaga

UNIVERSITÀ DEGLI STUDI DI BRESCIA - FACOLTA' DI INGEGNERIA - Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica

INTRODUCTION

- Lack of adequate sanitation services
- Health and environmental implications
- Unplanned rapid urban growth

Asses the SSP approach

Adapt to a specific context

Support the sanitation planning with a healthprotective perspective

Case study in Iringa, Tanzania

 WASH cooperation project implemented by Fondazione ACRA

2

THE CURRENT SITUATION

EMPTYING

- 23% manual
- 57% mechanised
- 20% bury and cover

Manual emptying

METHODS

SSP ADAPTATION

Development of a Simplfied Assessment Matrix

LIKELIHOOD (L;)					
1	Unlikely	Never happened in the past, improbable to occur in future or only under special circumstances (1 year)			
2	Possible	May have been occurred before and may occur under regular circumstances in future (1 year)			
3	Almost certain	Have been observed in the past and is likely or almost certain to occur several times in a year			
SEVERITY (S)					
1	Minor	Result in no health effects or minor discomfort (irritation, nausea, headache, etc.)			
2	Moderate	erate Result in minor illness (diarrhoea, vomiting, minor trauma, etc.).			
6	Major	Result in serious illness or injuries (malaria, schistosomiasis, foodborne trematodiases, bone fracture, etc.), even loss of life.			

- Hypotesis for the hazard: exposure to pathogens
- Hypotesis for the existing control measures assessment
- Definition of a methodology to prioritize control measures

	Potential (P)	Technical Effectiveness (TE)	Acceptability (A)	Cost (C)
W ₁	0,25	0,25	0,25	0,25
W _P	0,4	0,2	0,2	0,2
w _{TE}	0,2	0,4	0,2	0,2
w _A	0,2	0,2	0,4	0,2
w _c	0,2	0,2	0,2	0,4
W _f (FINAL)	0,3	0,2	0,1	0,4
high	4	4	4	1
medium	2	2	2	2
low	1	1	1	4

Priority = (P * w_P) + (TE * w_{TE}) + (A * w_A) + (C * w_C)

World Water Week, Stockholm - M. Domini, 30 August 2017

5

APPLICATION OF PLANNING APPROACHES (1)

APPLICATION OF PLANNING APPROACHES (2)

SSP:

Identification and prioritization

CLUES: improved system S1

Incremental improvement action plans - Monitoring and verification plans

World Water Week, Stockholm - M. Domini, 30 August 2017

STRENGTHS and WEAKNESSES

CLUES	SSP				
STRENGHTS					
+ Participation	📌 + Emphasis on health				
+ Ownership / Inclusion	+ Whole sanitation chain / exposure groups				
+ Guidance for technology	+ Multibarrier approach				
choice	+ Cost-effective perspective of interventions				
	+ What to do in case of CM failure /				
Participatory	preve Health				
	Whole sanitation chain				
Guided selection of technology options	WEAKNESSES - Not s Multibarrier approach				
- Informed choices	- Requires specific skills				
- "Decentralization" of power /	- Complex at urban level				
unpredictable	- Quantitative data involving costs				
 Human resources and time 					

CONCLUSIONS

SSP demonstrated to:

- be effective for identifying risks and cost-effective interventions in the concerned area
- support sanitation planning with safe reuse and disposal perspective
- support a deeper study of the current sanitation system

SSP adaptation as planning tool and to a specific contest:

integrated use of CLUES and SSP potentiates their strengths

World Water Week Stockholm, 27 August – 1 September, 2017

Thanks for your attention!

marta.domini@unibs.it

UNIVERSITÀ DEGLI STUDI DI BRESCIA - FACOLTA' DI INGEGNERIA - Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica

