Small-scale irrigation: the answer to ecosystem health? SIWI World Water Week 2018 – 26th August

Communal solar pumps in Mali: Curse or cure for ecosystem health?

Presenter: J Barron , SLU/WLE

On behalf of Afua G. Owusu, Marloes Mul, Benjamin Ghansah, Petra Schmitter, Nicole Lefore IWMI

Solar PV irrigation for smallholder farming systems

- Sustainable intensification
- Food and nutrition security
- Reduce and manage emission
- Look at multiple use-benefits from water and energy

Suitability analysis for solar powered irrigation in two countries in West Africa: Ghana, Mali

Farmers want new technology for irrigation, but need context specific solutions

(example Ethiopia technology comparison by ILSSI)

	Labor saving	Yield	Profi t	Multi- purpose use
Control	0	0	0	0
Rope and Washer	0	0	-/0	+
Solar	++	+	++	++
Motorized pump & drip	+/-	++	+/-	-

Summary of the opportunities and challenges related to each of the water lifting technologies towards the control (=manual water lift from surface or groundwater). ++, + and – represent a high, medium and low effect.

Scoping suitability for business model approach

- Decision-making support tool
- Address direct and indirect cost and benefit, incl gender, environment sustainability, market barriers
- Guide investments, policy and regulatory context
- Better understanding of
 - Scalability
 - Sustainability

\$

S ONOMIC SUSTAINABILITY

INSTITUTIONAL, POLICY

ILATORY CONTEXT

OLOGY SUPPLY CHAIN

BUSINESS MODEL

TECHNOLOG

 \Box

FINANCE

MECHANISMS

Results Mali and Ghana Solar PV irrigation suitability

Mali: GW ≤ 7 m & rivers/small reservoirs 2,079,600 ha of crop land

Ghana: GW ≤ 7 m & rivers/small reservoirs 2,342,900 ha of crop land

Key messages: Recommendations for ensuring small-scale irrigation and ecosystem health

- Solar PV irrigation suitability show great potential in Mali and in Ghana
- The issue of price is challenging for smallholder farmers to invest
- Community based PV pumping has been piloted (e.g., FAO) but with limits to garden irrigation
- Special design in business for solar PV irrigation is needed for inclusion of women and youth
- Sustainability, especially on deep groundwater use, and groundwater quality must be further explored

We are grateful to the EC-International Fund for Agricultural Development (IFAD) for their support.

This session was carried out and supported by the Feed the Future Innovation Laboratory for Small-Scale Irrigation funded by USAID, the CGIAR Research Program on Water, Land and Ecosystems (WLE) and the Swedish University of Agricultural Sciences

Benefits to women farmers from solar pumps

Women farmers in Ethiopia preferred solar pumps to other water lifting technologies (based on in-depth interviews in two states):

- Fixed at or near the home so does not need to be carried
- Offers multiple use services: domestic, irrigation, livestock
- Less labor and time than other technologies
- Provides access to 'clean' drinking water across seasons
- Suitable for homestead irrigated cultivation of crops women prefer

Constraints to access SSI for women and disadvantaged farmers

Disadvantaged farmers have lower access to SSI technologies:

- Adoption of SSI by farmers is skewed toward higher income males
- Lower income farmers lack access to information, credit and technology sources/markets
- Credit is generally not suited to purchase SSI technologies

Women farmers have added disadvantages:

- Lower access to all forms of information (extension, credit, technologies, complementary practices/tools)
- Lower access to credit sources (administrative, social barriers)
- Tend to 'lose' technologies once in the household SSI technologies are large assets
- Tend to lack control over income gained from irrigated production in the household

