

water for people EVERYONE • FOREVER

Effective stakeholder participation in IWRM and ecosystems approach

Kettie Harawa
Water For People Malawi
Country Director
kharawa@waterforpeople.org

SIWI World Water Week August 28, 2018

Research question

 Is there is a relationship between adopting IWRM principles and functionality of water points?

 How much of an influence does Permaculture -Reuse of waste water have on Ecosystem and functionality

The Project Area Chikwawa District:

- Rural district, pop. 434,000 people.
- Majority subsistence farmers living on < US\$0.50 per day
 Specific Traditional Authority
 Chapananga (100,000 people)

The Problem

- Drought and floods, Climate change
- Food insecurity
- Stagnant water
- 36% of water points non functional in T.A Chapananga
- 25% of all waterpoints are not functional at any given point in Malawi
- Reasons for non-functionality include:
 - Maintenance funds availability
 - Lack of community ownership

Intervention + IWRM Principles

Intervention

Introduced Localised IWRM principles

The IWRM Principles

- Water is an infinite resourcepromoting(permaculture) borehole waste water reuse
- Active Stakeholder Engagement at all levels
- Women Involvement- in decision making positions (60% of the water point committees
- Water is both a social and an economic good

Research Methodology

- Field work: Chikwawa District, Traditional Authority Chapananga, Kakoma Health Clinic Zone, 115 water points observation and user interview, 115 Water Point Committee representative interviews
- 3 in-depth interviews with IWRM adopters (2 in the intervention area, 1 outside the intervention area)
- 3 in-depth interviews with non IWRM adopters (2 in the intervention area, 1 outside the intervention area)

RESULTS: Overall IWRM Impact n=115

IWRM Adaptors	Functional water points	Non Functional Water Points	Percentage
No of IWRM adaptors	41	0	100%
No of Non IWRM adaptors	48	26	64.9%
Total	89	26	77.4%

Map showing the area under study and the surveyed sites

Functionality of water points vs availability of permaculture garden

	No of surveyed water points	Functional water Points	Non Functional water points	Functionality Percentage
Water point with a permaculture garden	36	36	0	100%
Water point without permaculture garden	79	53	26	67.1%
Total	115	89	22.6%	77.4%

Benefits

- Habitat for ecosystems
- Mitigates Malaria and other diseases
- Generates income for Pump operation and maintenance
- Re-use of water otherwise wasted
- Allows biodiversity
- Perennial source of Food
- Increases sustainability of the water resources
- Potential for economic development (over 2000 water points in CK)
- Strengthens social capital

Conclusion:

It can be concluded that there is a relationship between practicing IWRM and ecosystems approaches and functionality of water points/resources. Where IWRM and Ecosystems approaches are integrated, there is high probability that the water resource would be sustainable as it also plays as a habitat for ecosystems.

