Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

© The authors, all rights reserved

A critical evaluation of selected Persistent Inorganic and Organic Pollutants in the hydrological system

A case study on Keoladeo National Park (KNP), a UNESCO World Heritage Site in India

Lead Expert: B. Anjan Kumar Prusty

(anjanguide@gmail.com)

Gujarat Institute of Desert Ecology (GUIDE), Bhuj, India

Main and specific objectives

Consolidation of data on persistent inorganic and organic pollutants in the hydrological systems in and around Keoladeo National Park (KNP), Bharatpur, India

- Do toxic metals in the hydrosphere compartments show a temporal scale pattern?
- How do organo-chlorine and organo-phosphate pesticide residues in different hydrological compartments persist over time?

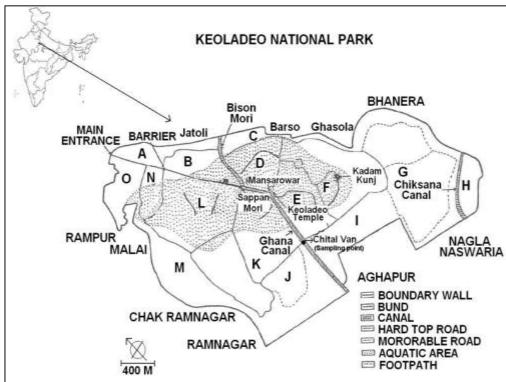
Expected outcome

- Knowledge base on persistent chemical residues in the KNP and its neighbouring satellite wetlands
 - Source and concentration of toxic metals, organo-chlorines and organo-phosphates in water and soil, and their decadal trend, if any.
 - Flux of these chemical residues into KNP from the surrounding landscape including the rivers or water inflow, etc.
- Agro-chemical use: Shift (decadal) in
 - Time of use
 - Frequency of use
 - Application rate
- Influencing factors (meteorological data), which affect these chemicals influx into the hydrological system
 - Decadal changes?

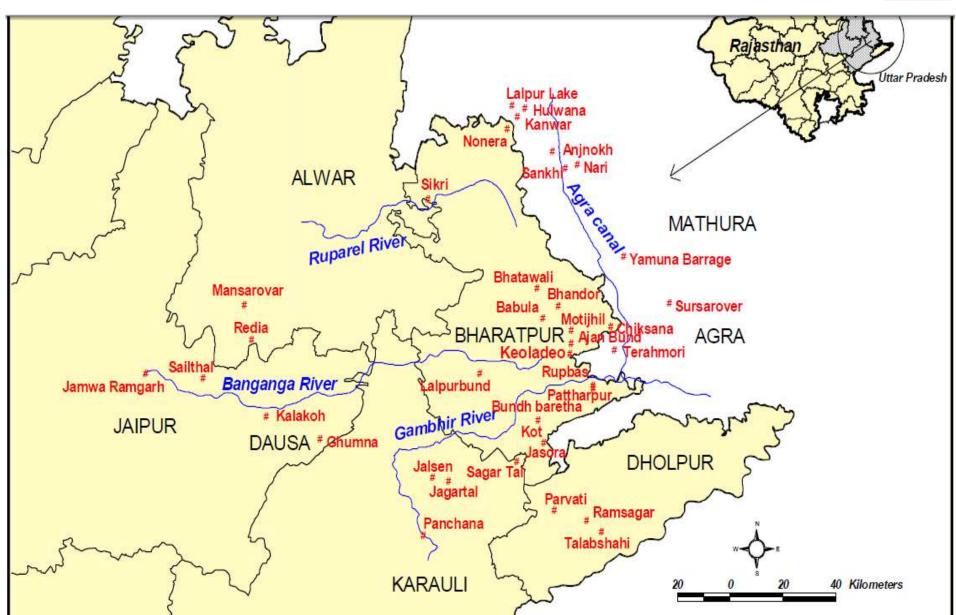
Data Availability and Access

Aspects	Hydrosphere	Potential source			
	(compartment)				
Meteorological aspects		•	India Meteorological Department (IMD), Jaipur		
(Rainfall, temperature)		•	Department of Water Resources, Government of		
			Rajasthan (GoR), India		
Water input to KNP	Water	•	Irrigation Department, Bharatpur		
		•	Office of The Director, KNP		
Area and site features	Satellite wetlands	•	Department of Water Resources (GoR)		
Water availability	and watershed (river				
	basins in the area)				
Agrochemical usage	Land	•	District Statistical Handbook (GoR)		
	(application in	•	Earlier survey reports by the Project investigator.		
	farmland)				
Toxic metals	Water and soil	•	Published and unpublished research articles and		
Organochlorines	Water and soil		reports		
Organophosphates	Water and soil	•	Earlier project reports and publications of the		
			Project Investigator & his team, and other		
			researchers in India		
Any of the above pollutants	Strategic locations /	•	Environmental samples will be collected and the		
	aspects		pollutants will be measured following standard		
			analytical methods.		

8/24/2015 1


Contribution to UNESCO's main project

By plugging the data gaps on persistent pollutants in hydrological systems from one of the representative


- Habitats of South Asia
- UNESCO World Heritage Sites

Year	Ecological causalities
1987- 1988	18 Sarus cranes 50 Collared doves
1989- 1990	Few Blue Rock Pigeons
2003- 2005	Proliferation of water hyacinth
2005- 2006	Invasion of <i>Clarias gaeripineus</i>
23-11- 2000	15 Sarus cranes and 03 Common cranes

Location of KNP and satellite wetlands

Wetlands Pattharpura	July	Aug Se _l	o Oct	Nov	Dec J	lan Fel	March	Apr	Мау	June	Species 18	Size (km²) 0.5	8848
Bhandor											16	1	180
Nonera											55	1	
Kanwar											12	1	Satellite
Jasora											37	1	wetlende end
Babula											14	2	wetlands and
Lalpurbandh											20	2	their
Rupbas											19	2	
Anjnokh							_				17	2	hydrological
Hulwana											15	2	details
Talabshahi											36	2	
Bhatawali											6	3	(located
Nari											37	3	within 200
Sagartal											22	3	
Jalsen											9	4	km from KNP
Sankhi											20	4	
Sursarover											48	5	in order of
Ghumna											20	5	their
Lalpur							_				24	5	
Kot								_			57	5	increasing
Ramsagar											35 43	6	distance from
Yamuna barrage											25	6 7	
Motijhil Senthal				-							25 24	7	KNP)
Sentnai Chiksana											10	8	
Redia bundh				-							45	8	
kalakhoh											5 4	10	
Jagartal											48	10	
Mansarover											45	10	
Jamwa Ramgarh											17	12	
Baretha Bundh											63	12	
Ajan Bundh											21	12	
Panchana											32	14	
Parvati											40	70	

- Various toxic chemicals being used in the farmlands
 - Endosulfan
 - Aldrine
 - 2,4-D
 - Cypermethrine
 - Other Organochlorines and
 - Organophosphates

Agrochemicals usage rate (% increase)

- •25% (cereals and oilseed crops)
- 108% (vegetable crops)

Expected POP residues

	8	0.21
<	20	8
	5	800

Sl. No.	POP	Group	SI. No.	POP	Group
1	α- HCH	ОС	17	DDT	ОС
2	β- НСН	ОС	18	Benzene hexachloride	OC
3	ү- НСН	ОС	19	Dicofol	ОС
4	δ- НСН	ОС	20	Lindane	OC
5	S- HCH	ОС	21	Phorate	ОР
6	Aldrin	ОС	22	Acephate	ОР
7	Dieldrin	ОС	23	Dimethoate	ОР
8	Heptachlor	ОС	24	Profenofos	OP
9	Hept. Epoxide	ОС	25	Cypermethrin	Pyrethreoids
10	Endosulphan- I	ОС	26	Fipronil	Phenylpyrazole
11	Endlosulphan- II	ОС	27	Carbendazim	Benzimidazole carbamate
12	Endosulphate	ОС	28	Mancozeb	Dithiocarbamate
13	S- Endosulphan	ОС	29	Chlordane	Cyclodiene (OC)
14	Endrin	ОС	30	Dichlorvos	ОР
15	4,4' –DDE	ос	31	Acetamiprid	Neonicotinoid
16	4,4'- DDD	OC	32	2,4-D	ОР

Reported OC residues

POP	2014	2010
α -BHC	٧	V
β- ВНС	٧	٧
Υ-BHC	V	V
δ- BHC	V	V
Heptachlor	٧	V
Aldrin	V	V
Heptachlor epoxide	V	V
α -Chlordane	V	
Υ -Chlordane	V	
Dieldrin	V	V
4,4'-DDD	V	V
4,4'-DDT	V	V
4,4'-DDE	٧	V
Endosulfan-I		V
Endosulfan-II		٧
Endo.sulfate		V
Endrin		V

It is just the beginning of data synthesis (case study development)

Much more to come.....

Thanks.