Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

[©] The authors, all rights reserved

Oil and gas sector water management:

From now to 2030

THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES

www.ipieca.org

What is IPIECA?

- Global oil and gas association for environmental and social issues
- Formed in 1974 following the launch of UNEP
- The only global association involving both the upstream and downstream oil and gas industry
- Membership covers over half of the world's oil production

ConocoPhillips

lips 🤤 🗧

Scope of Activity

Water Visioning - Objective

To build a long term vision (to 2030) for water management in the oil and gas sector

The vision will consider:

- Physical quantity and quality trends and constraints
- Future demand and supply
- Policy and regulatory trends
- SDGs
- Societal expectations
- Technological innovation

Overview

PRESENTATIONS	 Future Water Challenges: Understanding Future Water Supply and Demand Paul Reig, World Resources Institute
	American Energy: New Perspectives on the Shale Energy- Water Nexus • Amy Emmert, American Petroleum Institute
	 Future Direction of the Oil and Gas Sector in Management Water Resources: NGO Perspective Marielle Canter Weikel, Conservation International
	 Water Management at Shell: Global issues – Local solutions Alfio Mianzan, Shell Corporate Environment
DISCUSSION PANEL	Future Challenges: Panel SessionAll Panellists
	Summary and wrap up Alistair Wyness, IPIECA Water Working Group Chair

WORLD Resources Institute

FUTURE WATER CHALLENGES: UNDERSTANDING FUTURE WATER SUPPLY & DEMAND

Paul Reig, WRI 2015 World Water Week

FUTURE WATER CHALLENGES: UNDERSTANDING FUTURE WATER SUPPLY & DEMAND

- 1. Data limitations
- 2. Estimating future water supply and demand
- 3. Water quantity risks and impacts
- 4. Water policy & governance

1. DATA LIMITATIONS

- Gaps in regional-scale hydrological data
- Certain types of water data are not collected or reliable
- Water quality data is especially limited or unreliable,
- Some countries or regions sill restrict access to water data.
- Some water users and needs are unquantified or unquantifiable

2. ESTIMATING FUTURE WATER SUPPLY & DEMAND

Scenarios of future water supply:

- Impacts from GHG emissions
- Precipitation (Runoff)
- Temperature (ET and PET)
- 4 Representative Concentration Pathways (RCPs)

Scenarios of future water demand:

- Impacts from changing population, GDP and urbanization
- Industrial, agricultural, and domestic water demands
- 5 Shared Socioeconomic Pathways (SSPs)

Global pattern of change (ratio) in the mean annual runoff from the baseline period (1971–2000) to 2040. Hanasaki et. al (2013)

RCP2.6_2011_2040

RCP8.5_2011_2040

RCP4.5_2011_2040

Source: OECD (2012)

Source: MIT (2014)

The road forward

- Increasing water demands pose the largest threat to water security
- Water managers can intervene by curtailing increases in demand
- Adapting to decreasing water supplies in regions where water is already fully allocated will be a significant challenge.
- Some areas that are not expected to get drier may face increased seasonal variability of water supply.

4. WATER POLICY & GOVERNANCE

Water Trends	Policy Reponses
Increasing water demand	
Decreasing water supplies	
Declining water quality	 Pricing Diabte & Allegations
Unmet needs	 Rights & Allocations Standards (e.g. Treatment)
Changing expectations	etallete (orgi froatmont)
Climate change	

4. WATER POLICY & GOVERNANCE

Major governance challenges in 17 OECD countries (OECD 2011)

- Funding gap
- Capacity gap
- Policy gap (i.e. fragmentation of responsibilities)
- Boundary Mismatch (i.e. hydrological vs. administrative)
- Information & accountability gaps

RELATED SESSIONS

Monday August 24th 16:00-17:30

Revealing the Value of Water; Room FH 202

Wednesday August 26^{th,} 16:00-17:30

Managing Change: Future Water Stress and Flood Risk Assessment Tools; Room FH 307

For additional information, please contact:

Paul Reig | Associate, Water Program and Business Center | preig@wri.org

AMERICAN ENERGY - WATER NEXUS

573

Lune L

75

UNDERSTANDING THE U.S. REGULATORY FRAMEWORK

In the U.S., states are the primary regulators of resources – including both mineral development and water use.

The U.S. approach is consistent with the United Nations Commission on Sustainable Development recommendation that water should be managed at the lowest appropriate level in order to facilitate decentralized decision-making and stakeholder input.

WATER QUALITY : STRONG WELL CONSTRUCTION PROTECTS DRINKING AND GROUNDWATER

A 2015 draft report by the U.S. Environmental Protection Agency (EPA) confirms that hydraulic fracturing has not led to widespread, systemic impacts on drinking water resources thanks to the safety and effectiveness of state and federal regulations.

Regulated by Jursidiction

- Well construction*: material selection*, performance*, evaluation* – e.g.,
 - Cement regulation*
 - Casing and cementing depth*
 - Cement circulation*
 - Intermediate casing circulation*
 - Production casing circulation*
- Well integrity*: Protect groundwater through a combination of redundant steel casing and cement sheaths, mechanical isolation devices
- Well logging and other testing*: data gathering tools for formation evaluation, well design and construction

*Also covered by API Standards, Recommended Practices, or Guidance

RETURNS ON U.S. WATER INVESTMENTS

Oil and natural gas are currently relatively water efficient fuels.

5) Water for Energy: Is Energy Becoming the Thirstier Resource?, Internationa Energy Agency, Excerpt from the World Energy Outlook 2012

* The minimum is for primary recovery, the maximum is for secondary recovery. **Includes CO2 injection, steam injection and alkaline injection and in-situ combustion. ***Excludes water use for crop residues allocated to food production. Notes: Ranges shown are for source-to-carrier primary energy production, which includes withdrawals and consumption for extraction, processing and transpot. Water use for biofuels production varies considerably because of differences in irrigation needs among regions and crops; the minimum for each crop represents non-irrigated crops whose only water requirements are for processing into fugs The U.S. oil and natural gas industry produces the hydrocarbon inputs for 56% of U.S. energy production and 28% of US electricity generation by using less than 1% of the country's

Estimated Use of Water in the United States in 2010, U.S. Geological Survey, Circular 1405

RETURNS ON WATER INVESTMENTS: HYDRAULIC FRACTURING

- Generating electricity from natural gas can result in substantial water benefits; however, hydraulic fracturing is necessary to make accessing those deposits commercially viable.
- On a per unit of energy basis, using hydraulic fracturing to recover oil is also more energy efficient.
- Without hydraulic fracturing , the U.S. would lose 45 percent of domestic natural gas production within 5 years.

HYDRAULIC FRACTURING OIL PRODUCTION'

To learn more, see:

- API HF2: Water Management Associated with Hydraulic Fracturing and
- API RP 100-2: Managing Environmental Aspects Associated with Oil and Gas Operations Including Hydraulic Fracturing

API STANDARDS AND GUIDANCE RELATING TO HYDRAULIC FRACTURING

APL

API

APT

8PE

APE

AP1 AP1

APL

API I

APE

APT

API B

APS

APS B

API S

API R

T

Overview of Industry | Guidance/Best Practices Supporting Hydraulic Fracturing (HF)

API Spec 12 API RP 12R1

API RP 235

API Pub 46

API Bull D'H

APT RP 40

API BP 54

API RP 55 API RP 59

API RP 84

API RP 67 API RP 68

API RP 74

APt BP 75L

API RP 76

API Std 65-1

AP1 RP 90-2

API RP 100-1 API RP 100-1

API RP 50 API RP 51R

API Spec #F	Drilling and shell Servering Separate
API BP 4C	Drifling and Weil Sensoing Structure Onepiction and Montenance
API Spec BA	Weitheast and Christman Teer Equipment
API Spet 7K	Dilling Essement
API NP 88	Honting equipment (Impection and Meleterance)
API Spec BC	Hosting Europeanil
API Spice 16A	Dril-through Eculoment
API Spec 16C	Cheke and Kit Systems
API Spec 16D	Control Bystems for Drilling Well Control Egulpment
API RP 16ST	Golled Tubing Well Control Egulpment Systems
API SM 53	Blowout Prevention Equipment Systems
API IIP 92U	Underbalanced Diffing Operations
API Shit 686	Paradatity/Maintenanca Cata
API Spec 02	GMS Requirements for Service Organizations for the Petrosours and Natural Gas Industry
API Spec 128	Production Liquid Storage Tanka (Bollad)
API Spec 120	Production Liquid Storage Tarks (Field welded)
API Spec 12F	Production Liquid Storage Tanks (Shop welded)
API Spec 12J	Oil and Gas Separators
API Spec 12K	Indirect Type Olifield Heaters
API Spec 12L	Vertical and Horizontal Emulsion Treaters
API NP 12N	Fiame Arresters Operations, Testing and Maintenance

	Extergation Paintheoped Plastic Tarixa
	Production Service Tanks (Inspectico and Mantematica)
	Storage Tanks Overfil Protectors
Ð	Remediation of Bath-Affective Sollis
	Sp4 Peventurs Control and Dourtermeasure Plan
	Ditting and Dervising treating Hydrogen Batlide
	Dilling and Servicing Operations Occupational Ballety
	Cate Processing Involving Hydrogen Butticle
	Well Control Operations
	Diverter Systems Ecoloment and Operations
	Otheld Explosives Salety
	OI and Weit Servicing and Workover Operations
	Envolving Hydrogen Sufficie
	Production Operations Occupational Safety
	Safety and Environmental Managament Systems
	Contractor Safety Management
	Isolating Potential Flow Zomes
	Annular Casing Pressure for Orshora Walls
	Weil Integrity and Fracture Containment
	Environmental Aspects Related to Orahore Operations
	Environmental Protection Natural Gas Processing Plant Practice
	Environmental Protection for Operations

P.52	Environmental Promotion Land Drilling Practices
ull E2	NORM Management
di Et	Web Adamstroment and Exactlys Wells
ull ES-	Waster Management
UIL HEA	Community Engagement
pec SL.	Line Pape
pec 60	Proetine Votivos
P 6DR	Repair and Remanufacture of Pupeline Velves
FA H	Fire Testing for Valves
M 1104	Pipeline Welding
P 1110	Eteel Pipeline Pressure Testing
P 1133	Guidelines for Orahore Hydrocarbon Pipelines Affecting
	High Concequence Floodplakes
P 1160	Managing System integrity
P 1162	Public Awanness Programs
P 1168	Pipeline Inspection - New Construction
P 1173	Pipeline SMS
pec 11B	Suckar Rods
pec 11E	Pumping Units
P 11ER	Guarding Pumping Units

API SP SAJ	Dread Compounds
API RP 5A5	Casing, Tubing, Drill Pipe Field Inspection
API See: 5B	Threading, Gauges and Thread Importion
API RP 581	Throad Gauging and Implection Plantoos
API RP 5C1	Centry with Tubing Cars and Uke
API TR 503	Tubular Performance property calculations.
API BP 505	Casing and Tubing Connections Testing
API RP 506	Weicing Contections to Fipe
API Spec 50RA	Consular Residual Aloy Pipe
API See: 507	Casing and Tubing
API Spec 50P	Dr.t. Prov
API Sant 7-1	Drif Stem Elements
API Sanc 7-2	Patany Shouldened Commethion Threading and Galaxies
API SP 76	Drill Stern Design
API 9P 76-2	Drill Stern Elements thigraethin and Casarlination
API Soot 10A	Wei Canada
API RP 108-2	Well Coment Testing
API 82 108-4	Foamed Cement Teeting
API RP 108-5	Wet Cement Shrivkage and Expansion Determination
API 8P 108-6	Centers Static Gel Strength Delemanation
API Spec 100	Boer Boring Casing Centralizers
API 8P 100-2	Dentralizer Pacement and Stop-Onker Setting
API RP 10F	Cemort Float Eculoment
APITE LOTES	Cement Specific Evaluation
API TR 10TR2	Cornere Shrinkage and Expension

API TH 10TR3	Certail Inclaning Jane Tech
API TR 10TR4	Beledition of Certification
API TR 10TRS	Split and Right Centuryer Tenting
API Spec 13A	Driving Fluids
API RF 130-1	Water taxeed Orifing Fluids Teating
APL RF 13B-2	Oil-Based Drilling Flaide Texting
API RP 13C	Disting Huide Processing System Evaluation
API RF 130	Driving Fluids Pheology
API RP 131	Orbing Fields Lab Telling
API RP 13J	Heavy Griten Testing
APERP 13M	Completion Fluids Viscous Properties
API RF 13M-4	Gravel-graph Fluid Loak-04
APT RP 100	Wait Particular Evaluation
APT RF 190	Propports Properties
API RP 100	Long-term Conclusionly of Proppanta
API Spec 1101	Packers and Bridge Plugs
API SHI 1102	Progressing Cavity Pump Systems
API Std 1103	Progressing Cavity Pump Surface Only Systems
API Spec 14A	Bubeurtacie Safety Valves
API RP 14B	Subsurface Salety Valves (hapection and Michlenan
API Spec 14L	Look Mandrets and Landing Mapples
ABI Crist 10CT	Settin Excited Manchellin
	Walter

API is the world's leading standard-developing organization for the oil and natural gas industry.

Since 1924, API has developed standards for oil and natural gas operations.

API's formal consensus process is accredited by the American National Standards Institute (ANSI), the same institute that accredits U.S. national laboratories for their science and technology processes.

API standards are developed in an open process that requires regular review of its more than 600 standards covering all segments of the inclusity.

Nearly 200 API standards are cited over 3300 times in state regulations, and more than 100 standards are cited 270 times in federal regulations.

WITHIN OPERATIONS, WATER CHOICES MAY HAVE TRADE-OFFS

EXAMPLE I: CROSS-LINK FRACTUR

EXAMPLE 2: SLICKWATER FRACTURE

- Tanks isolate waters from the environment, creating closed loop systems.
- Impoundments facilitate evaporation, simultaneously returning water to the water cycle and reducing the amount that will need to be transported for treatment or disposal.

WATER TREATMENT TECHNOLOGIES ARE GROWING

Advances in water treatment technologies increase reuse and recycling opportunities.

Upstream water use represents only of nationwide water use.

Developments

1. rate march

- Mobile vs. Stationary
- Private vs. Public Investment
- High Salinity
 Treatment
- Groundwater Recovery

This use has simulated a **\$138 billion**

water treatment market that by 2020, is estimated to increase by \$357 million"

11) Water for US Hydraulic Fracturing: Competitive Strategies, Solutions, & Outlook, 2014-2020, Bluefield Research, November 2014

+ \$357 million

PARTICIPATE IN OUR ENERGY FUTURE

Questions?

Contact: Amy Emmert Senior Policy Advisor American Petroleum Institute Tel: +1 (269) 267-3517 Email: emmerta@api.org

Get

involved!

r fit

Learn the facts & science of shale energy development. Share what you know about shale energy with others in your community. **Develop** policies and plans that enable safe & responsible development.

Future Direction of the Oil & Gas Sector in Managing Water Resources:

A NGO Perspective

Marielle Weikel August 24, 2015

Current State of Water Resources

- Water stress and scarcity are increasingly apparent physical effects of climate change, and there are growing pressures on freshwater resources from increasing withdrawals and declining quality (UNEP, 2013).
- The World Economic Forum identified "water crises" as the number one risk in terms of potential impact to the global economy in 2015 (WEF, 2015).
- Under current projections, virtually all freshwater ecosystems and biodiversity will face ecologically significant climate change impacts by the middle of this century, most of which will be detrimental from the perspective of the human livelihoods and communities *(and businesses)* that depend upon them (WWF, 2010).

Freshwater Ecosystems and Biodiversity Risks and Opportunities

- The conservation of freshwater biodiversity is important for the long-term and sustainable supply of raw materials, and to sustain human and ecological communities that depend on it.
- However, the biodiversity value of water resources is not always systematically considered in oil and gas development and/or operations decision-making.
- Only a few of the corporate and water-focused tools and initiatives, including a few tailored to the extractive sector, give attention to the overlap of water and biodiversity and ecosystem services issues.

Trends in Water Management within Oil & Gas Sector

- Companies are increasingly relying on tools and approaches that can help them better identify risks and improve their decision-making processes:
 - IPIECA Global Water Tool
 - GEMI Local Water Tool
 - > WRI Aqueduct
- Companies are increasingly making progress in the following areas:
 - > Tracking their global freshwater consumption
 - Tracking freshwater intensity
 - Reporting performance (e.g. CDP's Water Disclosure Project)

Opportunities for Water Management Improvement

- Systematic consideration of not only risks associated with the physical and chemical properties of water resources, but also of impacts to and dependencies on <u>freshwater</u> <u>ecosystems and biodiversity</u>
- 2. Adoption of water-focused performance targets
- 3. Adoption of <u>watershed –level stewardship approaches</u> that ensure a clear recognition of the environmental and social dimensions of water management, extend beyond the operational "fence-line", and take a collaborative approach

1. Freshwater Ecosystems & Biodiversity – Integrated Biodiversity Assessment Tool (IBAT)

- Central database for globally recognized biodiversity information:
 - Key Biodiversity Areas
 - Protected Areas
 - Ramsar Sites
 - IUCN Red List including freshwater-dependent species
- Freshwater enhancements:

Allows decision-makers to access up-to-date information for screening potential site-level risks and opportunities to freshwater biodiversity and ecosystems within a project boundary, thus providing additional insight for decision making.

1. IBAT (continued)

2. Performance Targets

• Cue from mining sector – Newmont example

0	Water targets		
Year	Target definition	Target for sites	Target for Newmont
2015	Implementation of the Water Accounting Framework (WAF)	Complete a WAF	100 percent of sites to have completed a WAF
2016	Percent implementation against the sites' Water Strategy Action Plans	Complete 100 percent of actions and achieve	
2017		80 percent of water targets established in the site Water Strategy Action Plan	100 percent of sites complete their action plans for the year and achieve their water targets (80 percent in 2016 and 90 percent in 2017)
		Complete 100 percent of actions and achieve	
		90 percent of water targets established in the site Water Strategy Action Plan	

3. Watershed-Level Approaches

- Alliance for Water Stewardship
- Water Action Hub

 WASH and Freshwater Conservation Guidelines Marielle Weikel Senior Director, Responsible Mining and Energy Conservation International mcanter@conservation.org

WATER MANAGEMENT AT SHELL GLOBAL ISSUES – LOCAL SOLUTIONS

Alfio Mianzan, Business Improvement Manager -Water and Green Infrastructure

CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this announcement "Shell", "Shell Group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this announcement refer to companies in which Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as "associated companies" or "associates" and companies in which Shell has significant influence but not control are referred to as "jointly controlled entities". In this announcement, associates and jointly controlled entities are also referred to as "equity-accounted investments". The term "Shell interest" is used for convenience to indicate the direct and/or indirect (for example, through our 23 per cent shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This announcement contains forward looking statements concerning the financial condition, results of operations and businesses of Shell and the Shell Group. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Shell and the Shell Group to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward looking statements are identified by their use of terms and phrases such as "anticipate", "believe", "could", "estimate", "expect", "goals", "intend", "may", "objectives", "outlook", "plan", "probably", "project", "risks", "seek", "should", "target", "will" and similar terms and phrases. There are a number of factors that could affect the future operations of Shell and the Shell Group and could cause those results to differ materially from those expressed in the forward looking statements included in this announcement, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (I) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward looking statements contained in this announcement are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward looking statements. Additional factors that may affect future results are contained in Shell's 20-F for the year ended 31 December 2014 Royal Dutch Shell's 20-F (available at www.shell.com/investor and www.sec.gov).(These factors also should be considered by the reader. Each forward looking statement speaks only as of the date of this presentation. Neither Shell nor any of its subsidiaries nor the Shell Group undertake any obligation to publicly update or revise any forward looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward looking statements contained in this announcement.

Shell may have used certain terms, such as resources, in this announcement that the SEC strictly prohibits Shell from including in its filings with the SEC. U.S. investors are urged to consider closely the disclosure in Shell's Form 20-F, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

THE RISING EXTERNAL PROFILE OF WATER

Brazilian reservoir levels

GLOBAL WATER SCARCITY

AQUEDUCT

STRESS NEXUS

ENERGY is needed to clean and transport water

WATER is needed to generate energy

Global demand is set to rise 40-50% by 2030

ENERGY is needed to produce food

FOOD can be used to produce energy

FOOD transports (virtual)

WATER is needed to

water

grow food

Copyright of Shell International

WATER MANAGEMENT

- Water regulation evolving rapidly
- Water management plans
 - water scarce areas
 - future water scarce areas

Centre of Excellence in Bangalore:

- Integrated project delivery
- Technical support

COLLABORATION

CLIMATE CHANGE ADAPTATION

INNOVATIVE COLLABORATION: WATER RECYCLING AT GROUNDBIRCH

REDUCING FRESHWATER USE: DESALINATION AT PULAU BUKOM, SINGAPORE

WATER OPPORTUNITIES

FOR MORE INFORMATION

http://www.shell.com/global/environment-society/environment/freshwater.html

Fresh water around the world

Discover examples of how we save, reuse and recycle water.

Down the drain... and into energy production

In an unusual arrangement with the City of Dawson Creek, Shell engineers in Canada are using treated waste water instead of precisus fresh water to make natural gas wells productive.

A natural filter for water

Extracting oil sometimes produces a lot of water, which must be carefully cleaned before it is disposed of. In the desert of Oman, needs are now used to filter this water naturally before it evaporates in the sup.

Future Challenges:

Panel Discussion

Alistair Wyness Water WG Chair

THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES

www.ipieca.org

Key future challenges As prioritised by the IPIECA water working group

- Demand supply imbalance, affected by population, economy and climate change
- Water price & value evolution
- Societal and environmental pressures
- Technical development to improve agricultural and industrial water efficiencies?
- Regulations (global, national, regional, local)
- Overlap between areas of oil & gas development & water stress/scarcity

Summary:

Wrap Up

Alistair Wyness Water WG Chair

August 2015

THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES

www.ipieca.org

For More Information

http://www.ipieca.org/focus-area/water

