

Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

[©] The authors, all rights reserved

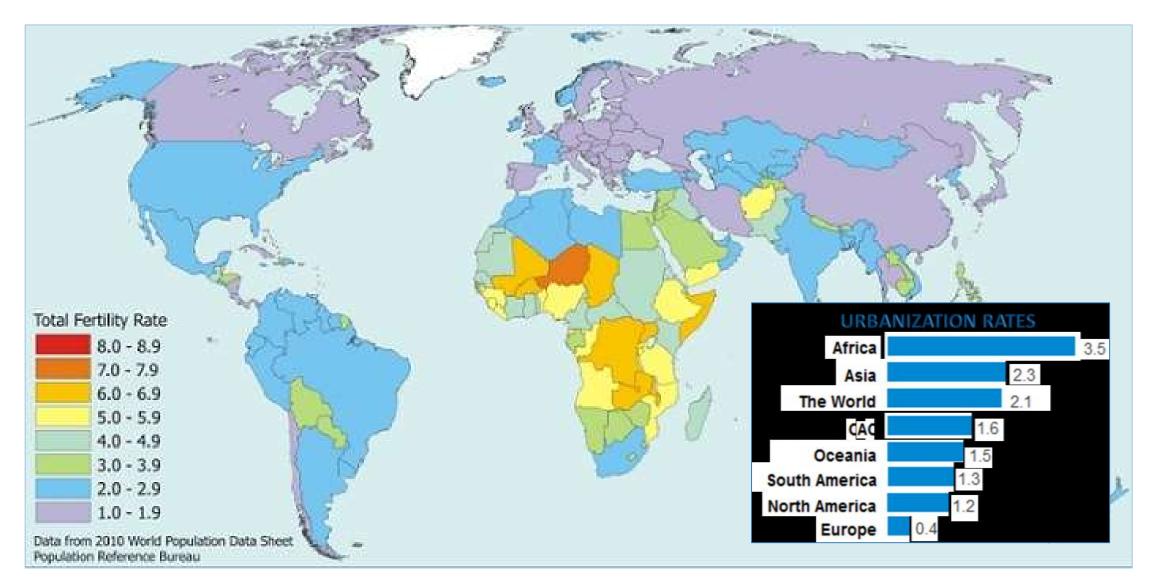
Optimizing Water and Energy Management in Cities

Selected cases from Africa and beyond

Angela Klauschen Senior Network Officer, GWP World Water Week, Stockholm, August 23rd, 2015

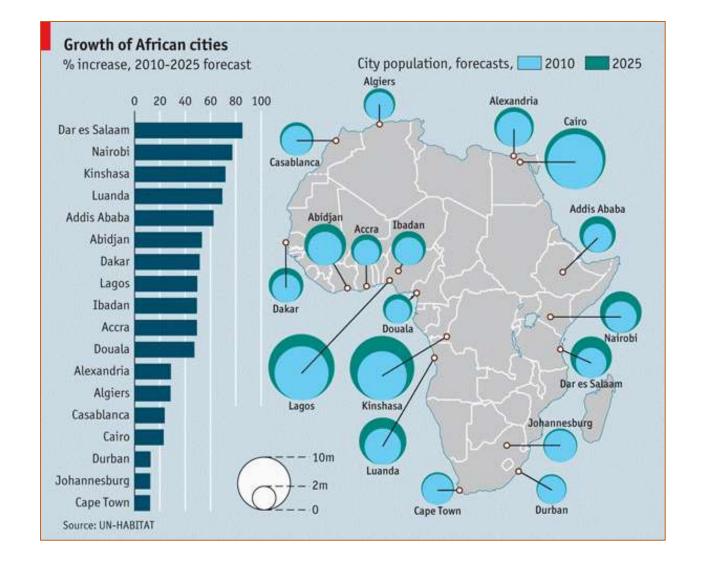
Contents

- 1. Overview of GWP's work on water-energy nexus in urban settings
- 2. Selected cases
- 3. Conclusions Way forward

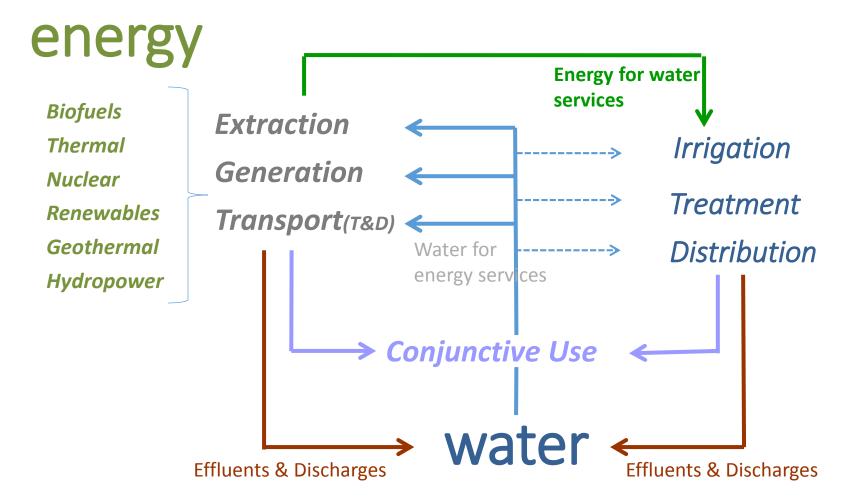


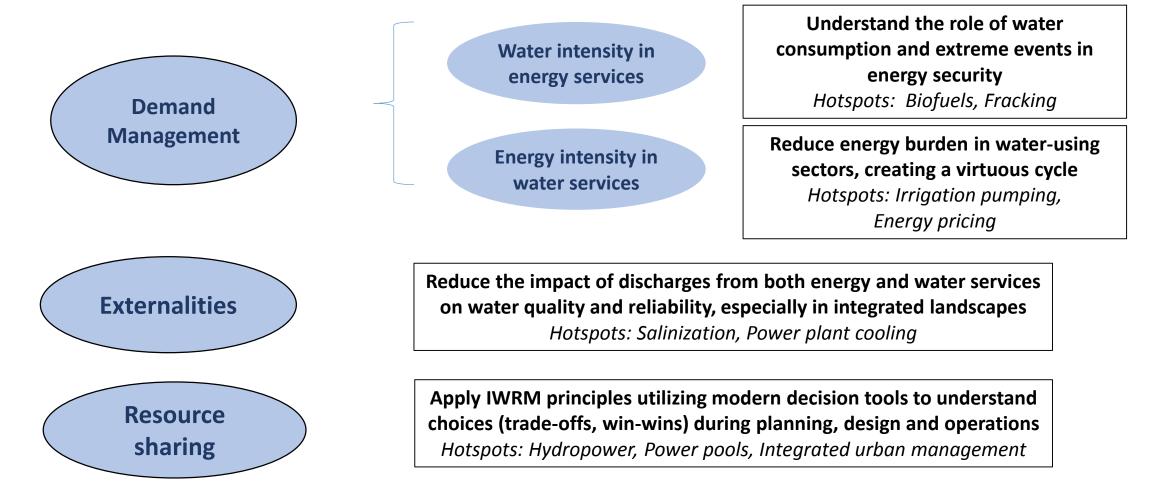
1. Overview of GWP's work on water-energy nexus in urban settings

Population growth, urbanisation, nexus



Emerging mega-cities in Africa


- By 2016 > 500 million Africans living in urban centres
- 65 cities with > 1 mill. people by 2016
- By 2030, Africa to host 3 of 10 world's largest cities
- Africa more urbanized (40%) than India (30%) and almost as urbanized as China (45%)
- Addressing urban dwellers' needs in water and energy a huge challenge



Mapping the energy-water inter-linkages

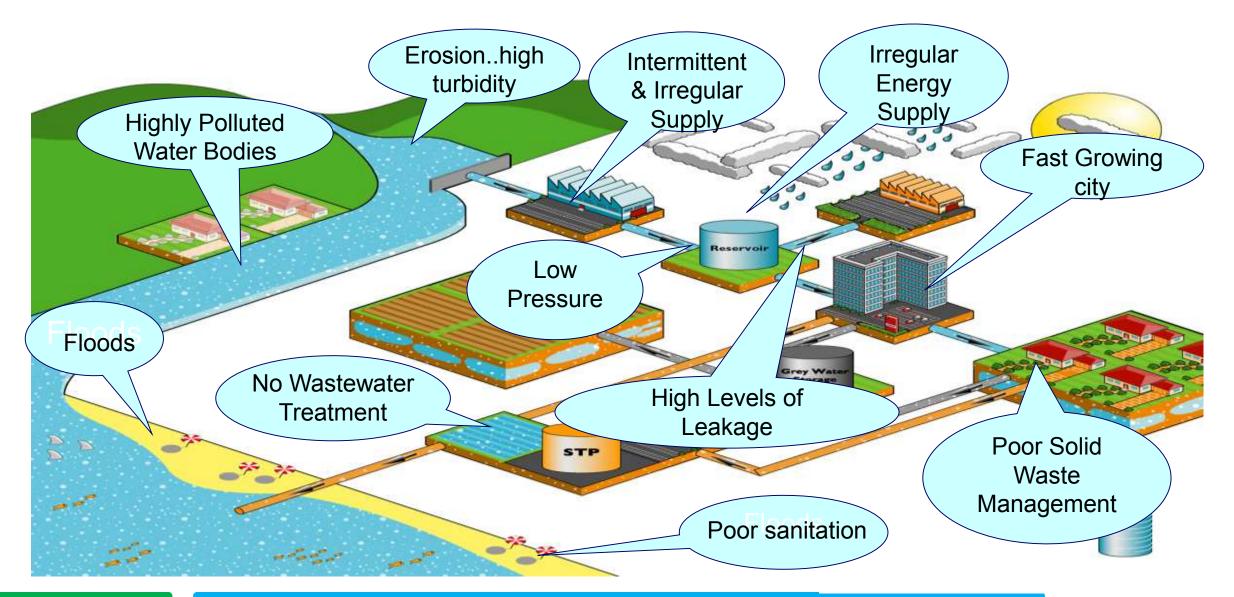
Developing an integrated energy-water management A Global Water (IEWM) framework

8

Developing meaningful institutional inter-action

... between two different worlds...

Energy 'sector'	Water 'sector'
 Plant manager Utility/Company Dispatchers/Distribution Regulator Power pools Ministry of Energy Cttee on Water Resources Cttee on Climate Change Cttee on Sustainable Dev. 	 Farmers Water user associations Water authorities Private suppliers Basin organization Ministry of "Water" Cttee on Water Resources Cttee on Climate Change Cttee on Sustainable Dev.



- ... and overcoming the challenges:
- different languages
- different spatial scales
- different priorities and incentives
- different market and political status
- deep uncertainty and unpredictability

Addressing additional complexity in cities...

Optimizing Water and Energy Management in Cities Source: CSIRO

2. Selected cases

Sewage-to-energy project in Dakar, Senegal
Integrating water and energy dimension in the

Master Plan of Kinshasa, DR of Congo

 Addressing energy security in local communities of Bughesera Catchment, Burundi-Rwanda

Rooftop solar water heaters in Mediterranean cities

Case 1: Sewage-to-energy project in Dakar, Senegal

Case 1: Sewage-to-energy project in Dakar, Senegal

Overall objective:

- **Reuse of sewage sludge as fuel** to create added value to sewage by-products
- Foster improved management of the independent sanitation sector in Senegal

Population	Population (2012)	*Accès à l'assainissement (%)	Technologies	OMD (2015)%
Villages Dispersés (<10K)	7,498 925	49,00	Vip latrines	63
Villages (10K - 50K)	815,663	49,00	Latrines	63
Petites villes (50K - 100K)	361,217	89,00	Fosses étanches, fosses septiques, VIP, Pit Latrine, Latrine	78
Grandes villes (100K - 500K)	1,786 430	89,00	Fosses étanches, fosses septiques, VIP, Pit Latrine, Latrine, égouts	78
Villes (>500K)	2,539 273	89,00	Fosses étanches, fosses septiques, VIP, Pit Latrine, Latrine, égouts	78
Population totale	13,001 508	73,00		

Case 1: Sewage-to-energy project in Dakar, Senegal

Specific aims:

- Demonstrate that dried sludge has a calorific value comparable to solid fuels (wood, coal, etc.)
- Optimise drying processes to improve the qualtity of the dried sludge
- build a pilote furnace to burn sludge and create sufficient heat for used oils to reach temperature of 360°C
- Monitor the furnace's perfomances, quality and quantity-wise
- Characterize and quantify the combustion residues

Case 2: Integrating water and energy dimension in the Master Plan of Kinshasa, DR of Congo

Case 2: Integrating water and energy dimension in the Master Plan of Kinshasa

- 64% water supply coverage
- 10% community-managed
- Only septic tanks and latrines
- Waste mostly discharged into rivers

Case 2: Integrating water and energy dimension in the Master Plan of Kinshasa

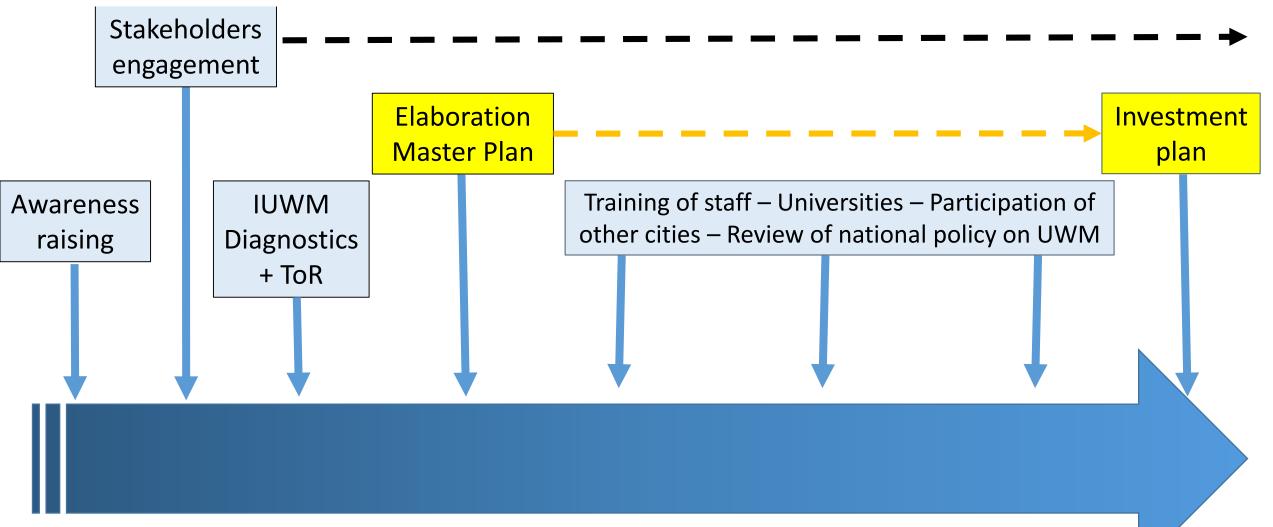
Project objectives:

- Address sanitation needs of Kinshasa
- Identify financing means

Means:

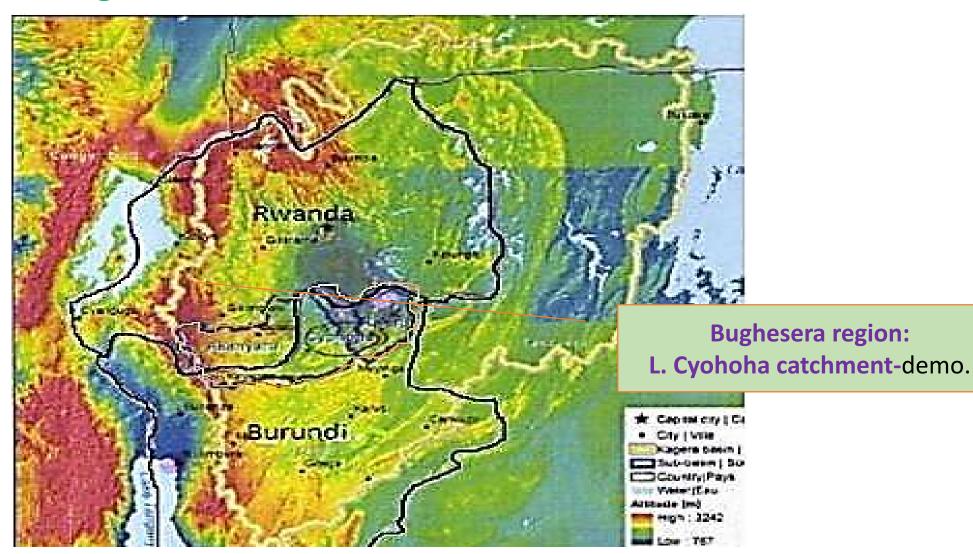
- Water as a resource (grey water, biogas...) to help communities cover cost/price of water
- Creation of business opportunites
- Development of ToR for Kinshasa's Master Plan

Partners: African Water Facility, GWP



African Water Facility Facilité africaine de l'eau Mobilising Resources for Water in Africo Mobiliser des ressources pour l'eau en Afrique

Case 2: Integrating water and energy dimension in the Master Plan of Kinshasa



Case 3: Addressing energy security in local communities, Bughesera Catchment, Burundi-Rwanda

20 22 August 2015

Optimizing Water and Energy Management in Cities

Priority Interventions	Mechanism for implementation
<i>Water:</i> Extending water supply systems to communities	Work with partners-Utility, local government Private suppliers/contactors
Energy: Introduce improved cooker stoves, biogas, afforestation to increase the forestry cover	Work with partners (CONCERN), community groups/associations (Women groups), private suppliers/contractors
Food security: new agronomic practices	Work with partners-Local Govt. office Community groups/associations
<i>Environment:</i> Lake Cyohoha buffer zone protection, upper catchment protection	Work with partners-RENGOF, Community Associations, Youth Group

Priority Interventions	Mechanism for implementation
 Strengthen/establish Community structures for managing/producing: water points Need for alternative sources of energy Improved cook stoves Parts of the catchment: buffer zone, sub-catchment L.Cyohoha catchment Stakeholders' platforms 	Work with partners-Local Govt., NGOs, Community Groups/Associations, Private suppliers/contractors
 Awareness raising, CB, training on: Challenges: environmental degradation, climate change, water scarcity, energy security Water and other NR management: importance, ownership and participation Community structures New approaches, methods, technologies, management 	Work with partners-Local Govt., NGOs, Community Groups/Associations, Private suppliers/contractors

1. Construction of biogas digesters

 Demo biogas digesters built to be fed by cow dung and fecal sludges to produce biogas energy.

- 2 cooking stoves and 1 light bulb installed in each HH's kitchen.

Biogas energy serving about 11
households with more than 118
family members spread out in
different villages.

2. Construction of energy saving stoves

Hundred of households supported with improved cook stoves as part of:

- a. energy security measures
- b. decreasing deforestation for fire wood
- c. family **income saving** by reducing expenditures for buying charcoal
- d. use of **alternative source of energy** rather than hydro efficiency and low cost.

Conclusions:

- Key challenges for communities: poor access to fuel wood, use of inefficient and traditional cookers, poor level of awareness
- Energy issues as part of integrated management of water and other natural resources in the catchment
- Energy security considered **throughout the process**: situational analysis, identification of interventions and taking actions
- Addressing energy challenges considered as part of adaptation strategy
- Water resources management was an entry point to promote an integrated management of water and other natural resources, and to sustainable development

Case 4: Rooftop solar water heaters in Mediterranean cities

Case 4: Rooftop solar water heaters in Mediterranean cities

Concept:

- save conventional energy and money, making use of abundant sun in the region
- use flat roofes in modern urban dwellings to save space

Result: a sustainable, **cost- and resource-efficient** solution for HHs (savings est. at 2 mill. barrels oil or 320km3 per year in Israel)

Geographic scope: Israel, Cyprus and Greece per capita leaders (> 30%–40% homes equipped) in solar water heaters use. Spain 1st with compulsory installation of PV in new buildings, and 2nd for solar water heating systems

In 1953, launch of Israel's 1st commercial manufacturer. Now world leader with 85% of the HHs equipped (3% primary national energy consumption)

4. Conclusions – Way forward

Some opportunities, many challenges...

Opportunities

- Resource-sharing and conjunctive use at source of water and energy in urban planning for new/small cities, leading to significant efficiency gains
- Significant savings through multi-purpose infrastructure and coordinated operations
- Possibility to design semi-decentralised systems (WTPs, SWTPs, PPs) and off-grid for smaller communities
- Integration of features in architecture (bioclimatic, saving devices, Solar PV on roofs, etc.)

Challenges

- Extremely **rapid pace of urbanisation** a challenge for urban planners to anticipate number of HHs to be served and extent of geographic coverage
- Sheer number and size of megapolis in e.g. Asia, Africa, Latin America where a posteriori adjustments are difficult
 - Size and extent of infrastructure needed for the delivery of services to the consumer (grids, water distribution systems, sewage systems)
 - Securing sufficient water and energy supply from outside towards big urban areas

No "one size fits all" solution...

- Key stakeholders urban planners, water managers, energy utilities, etc. need to cooperate for suitable solutions and to coordinate action
- Inter-institutional mechanims to be set up and take into account future challenges in a dynamic world (rapid urbanisation, climate change...)
- High-tech, state-of-the art private sector to be involved to help foster innovative, tailor-made, leap-frog solutions
- Flexible and sustainable financial mechanisms to support long-term viability
- Education and consultation of citizens and urban dwellers to facilitate buy-in to modern, sophisticated infrastructure and technologies
- Keeping it simple and affordable, especially in rural, remote areas...

Thank you for your attention!

You can find out more about us at: www.gwp.org

And visit our **online library** for water reources management: www.gwptoolbox.org

31 22 August 2015

Optimizing Water and Energy Management in Cities