Presentation from 2016 World Water Week in Stockholm

www.worldwaterweek.org

[©] The authors, all rights reserved

Microplastics in Freshwater Environments An Emerging (Health) Issue

Michiel Roscam Abbing

Stockholm, 1 September 2016

michiel@plasticsoupfoundation.org

Emerging Issue

- 1997: Captain Moore discovers floating plastic in the middle of the Pacific (Plastic Soup)
- 2004: Term "microplastics" is coined

• 2011: UNEP "emerging environmental issue"

• 2016: First conference ever on "Plastics in Freshwater Environments" in Berlin

General Picture 2016

 "Plastic Soup" is recognized as environmental issue for marine ecosystems

 But hardly considered as such for freshwater systems

 Microplastics in freshwater are sporadically studied

Most countries lack policy/legislation

PLASTIC SOUP

- Production & consumption of plastic increases
- Plastic is very persistent, does not degrade
- It does fragmentize
- Micro- and nanosized plastics accumulate in aquatic environments
- Plastics enter the Food Chain
- Plastics potentially threaten Human Health

Few freshwater studies

Main findings of 31 studies

- South America & Mexico: 2
- USA & Canada: 7
- Europe: 16
- China: 3, Mongolia 1
- Africa (Tanzania): 1
- Russia: 1

Focus

- Occurrences of microplastics
- In water, sediments
- In organisms like fish, and filter feeders
- Differences in concentrations (e.g. close to cities or industries)
- Different types, pathways and sources

Different Types

- Fragments
- Fibres
- Flakes
- Filaments
- Spherules
- Pellets
- Films
- Granules

Fragments from River Rhine

Fibres from River Danube

Different Sources

- Fragmentation of debris
- Tires
- Synthetic garments
- Cosmetics
- Detergents
- Paint
- Spills from industry (pellets)

Microplastics in cosmetics

PLASTIC SOUP

Other Pathways (hardly studied)

- Atmospheric fallout
- Mowing litter on roadsides
- Usage of artificial turf
- Plastic mulching in agriculture
- Grinder pumps in high pressure sewage
- Leakages from recycling industry

Different places

- Remote lake in Mongolia
- Victoria lake, Africa
- Artic
- Deep sea, sediments
- Alpine lakes
- Chinese estuary
- Effluent WWTPs

Different Methods used Low Rate of Comparability

- Mesh sizes differ
- Sampling: anecdotal evidence
- Lack of research standards & protocols
- Circumstances differ (weather, discharges)
- Technological limitations

Overall picture

- Microplastics are everywhere
- Many sources and types
- No method to clean waterways in a costeffective way
- Biota ingest microplastics (with effect on populations?)
- Also countries with modern waste management systems leak plastics
- WWTPs do not capture all microplastics

Rising Human Health Issue

 Plastic in water adsorb toxic chemicals, ingested by species

• Plastic in water leaches added chemicals

• Smallest particles enter tissue, blood, placenta

Transport of pathogens (microplastics act as a vector)

To Conclude

- There is no easy solution
- Prevention at source
- Measures per source
- Consider plastic in water as hazardous
- Authorities are responsible for water quality and must take the lead
- Act now on the basis of the precautionary principle