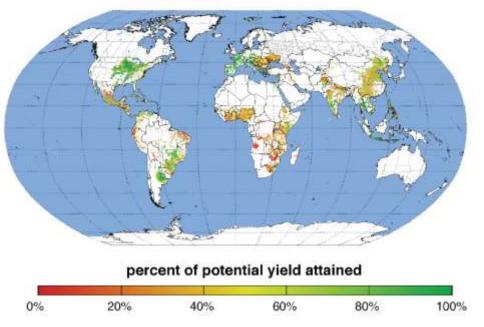
Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

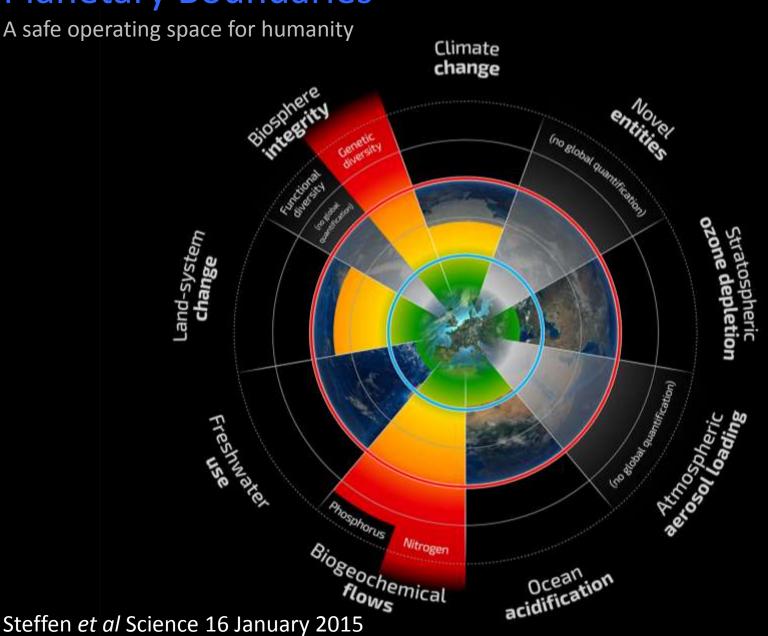
© The authors, all rights reserved

Green Water Solutions Key for Sustainable Development



ANALYSIS

Solutions for a cultivated planet


Jonathan A. Foley¹, Navin Ramankutty², Kate A. Brauman¹, Emily S. Cassidy¹, James S. Gerber¹, Matt Joh Nathaniel D. Mueller¹, Christine O'Connell¹, Deepak K. Ray¹, Paul C. West¹, Christian Balzer³, Elena M. F Stephen R. Carpenter⁵, Jason Hill^{1,6}, Chad Monfreda⁷, Stephen Polasky^{1,8}, Johan Rockström⁹, John Shee David Tilman^{1,11} & David P. M. Zaks¹²

maize yield attainment

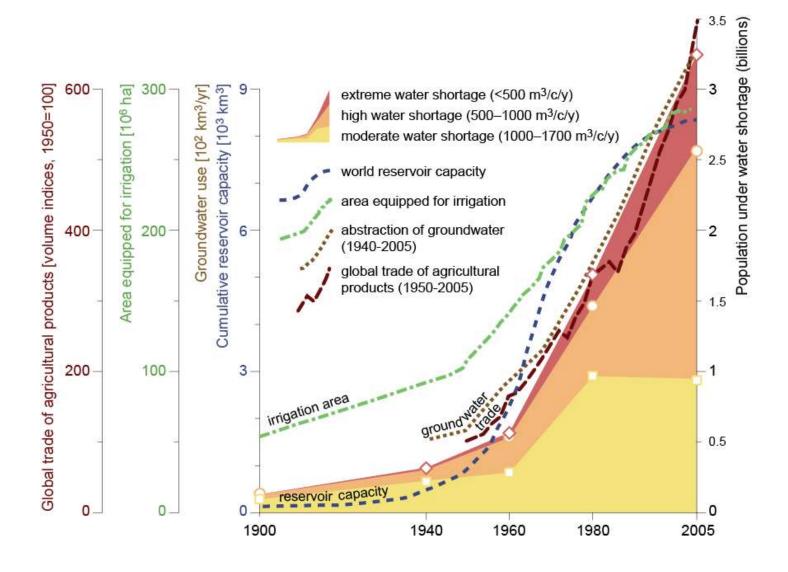
Planetary Boundaries

Earth System Process	Control Variables	Planetary Boundary (zone of uncertainty)	Current Value of Control Variables
Climate change	$\begin{array}{ll} {\rm AtmosphericCO_2concentration,} \\ {\rm ppm} \end{array}$	350 ppm CO ₂ (350–450 ppm)	396.5 ppm 00 ₂
	Energy imbalance at top-of- atmosphere, W/m ²	Energy imbalance: +1.0 W m ⁻² (+1.0-1.5 W m ⁻²)	2.3 W m ⁻² (1.1-3.3 W m ⁻²)
Biosphere integrity	Genetic diversity: Extinction rate	Genetic: < 10 E/MSY (10–100 E/MSY) but with an aspirational goal of ca. 1 E/MSY (the back- ground rate of extinction loss). E/MSY = numbe of extinctions each year per million species	
	Functional diversity: Biodiversity Intactness Index (BII)	Functional: Maintain BII at 90% (90–30%) or above, assessed geographically by biomes/	84.4%, applied to southern Africa only
	Note: These are interim control variables until more appropriate ones are developed	large regional areas (for example, southern Africa), major marine ecosystems (for example, coral reefs) or by large functional groups	
Novel entities	No control variable currently defined	No boundary currently identified, but see boundary for stratospheric ozone for an example of a boundary related to a novel entity (CFCs)	
Stratospheric ozone depletion	Stratospheric 0 ₃ concentration, DU	<5% reduction from pre-industrial level of 290 DU (5%–10%), assessed by latitude	Only transgressed over Antarctica in Austral spring (~200 DU)
Ocean acidification	Carbonate ion concentration, average global surface ocean saturation state with respect to aragonite (Ωarag)	≥80% of the pre-industrial aragonite saturation state of mean surface ocean, including natural diel and seasonal variability (≥80%– ≥70%)	-84% of the pre- industrial aragonite saturation state
Biogeochemical flows: (P and N cycles)	Global: P flow from freshwater systems into the ocean	Global: 11 Mt P yr ¹ (11–100 Mt P yr-1)	22 Mt P yr1
	Regional: P flow from fertilizers Leto erodible soils	Regional: 3.72 Mt yr ¹ mined and applied to erodible (agricultural) soils (3.72-4.84 Mt yr ¹). Boundary is a global average but regional distribution is critical for impacts.	~14 Mt Pyr1
	Global: Industrial and intentional biological fixation of N	44.0 Mt N yr ³ (44.0–62.0 Mt N yr ³). Boundary acts as a global "valve" limiting introduction of new reactive N to Earth system, but regional distribution of fertilizer N is critical for impacts.	150 Mt N yr ¹
Land-system	Global: area of forested land as % of original forest cover	Global: 75% (75–54%) Values are a weighted average of the three individual biome	62%

Freshwater use

Global: Maximum amount of consumptive blue water use (km³yr¹)

Global: 4,000 km³ yr¹ (4,000–6,000 km³ yr¹)

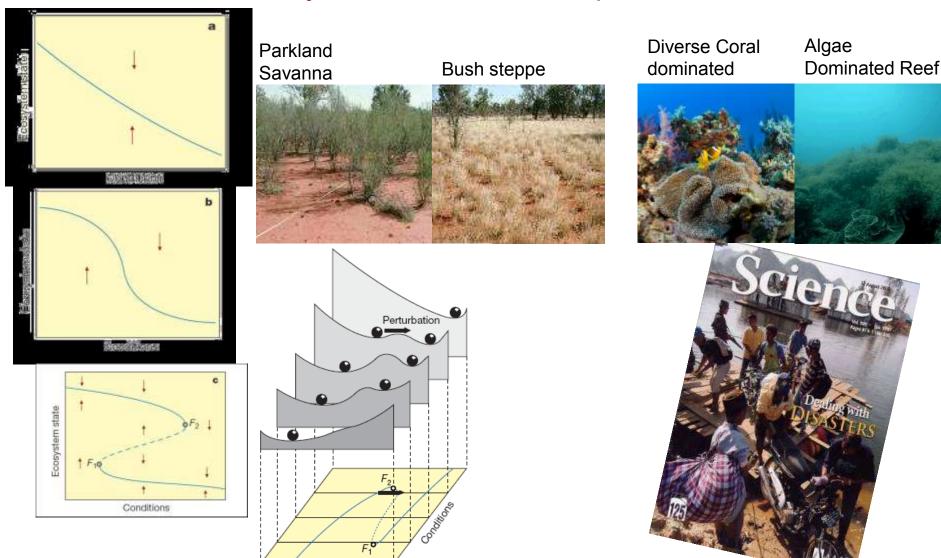

~2,600 km³ yr⁻¹

Basin: Blue water withdrawal as % of mean monthly runoff

Basin: Maximum monthly withdrawal as a percentage of mean monthly runoff. For low-flow months: 25% (25–55%); for intermediate-flow months: 30% (30–60%); for high-flow months: 55% (55–85%)

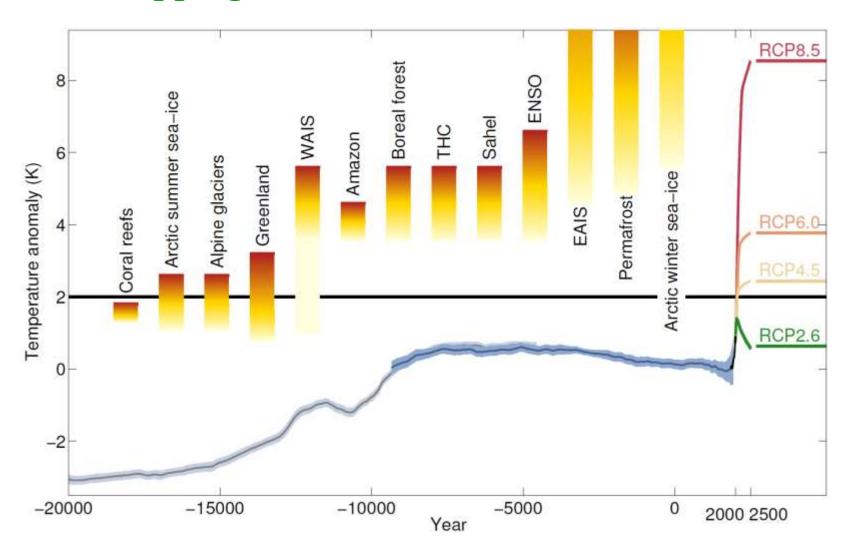
Monsoon used as a case study

scattering) AOD over Indian subcontinent of 0.25 (0.25–0.50); absorbing (warming) AOD less than 10% of total AOD

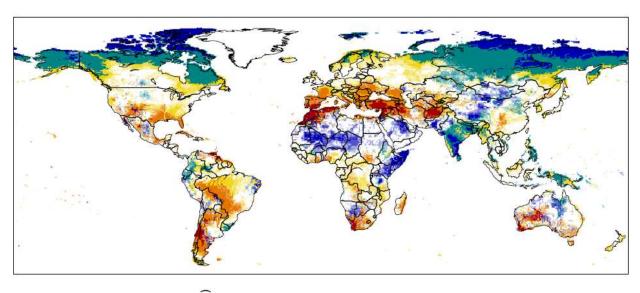


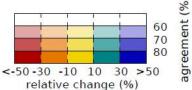
Kummu, Ward, de Moel, Varis 2010 Environmental Research Letters

CRITICAL TRANSITIONS


Critical transitions or regime shifts

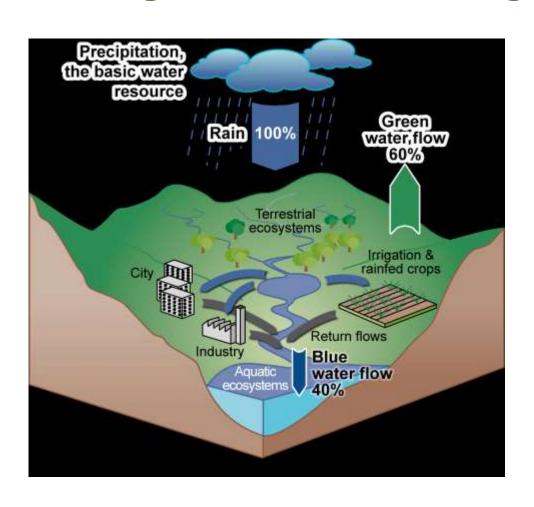
Regime shifts are substantial, persistent, reorganizations in ecosystem structure and processes

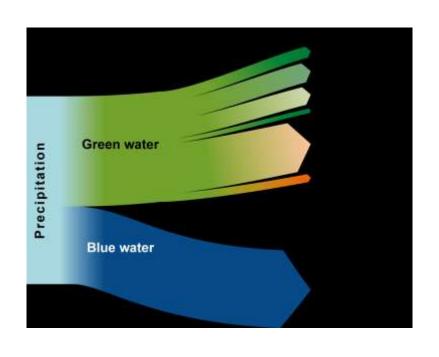

Ecosystem state

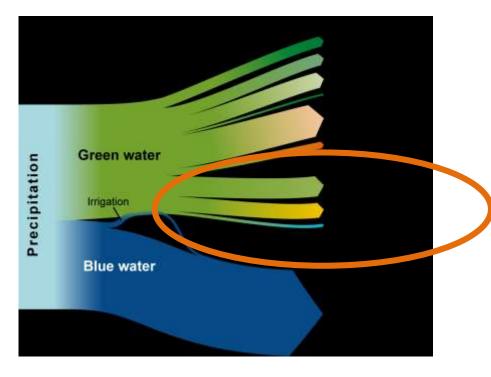

Tipping Points Related to 2°C-Guardrail

Multi-model assessment of water scarcity under climate change

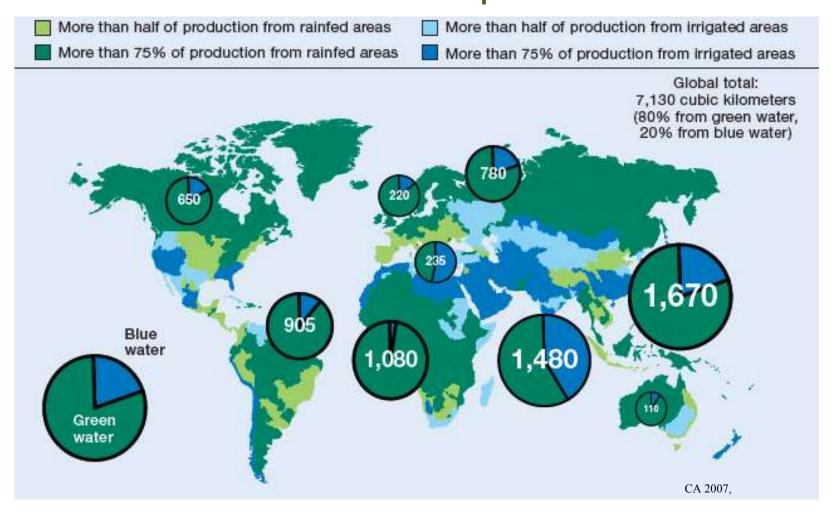
Jacob Schewe*, Jens Heinke*a, Dieter Gerten*, Ingjerd Haddeland†, Nigel W. Arnell‡, Douglas B. Clark§, Rutger Dankers¶, Stephanie Eisner¶, Balázs Fekete**, Felipe J. Colón-Gonzálezb, Simon N. Gosling††, Hyungjun Kim‡‡, Xingcai Liu§§, Yoshimitsu Masaki¶¶, Felix T. Portmann***, Yusuke Satoh†††, Tobias Stacke‡‡‡, Qiuhong Tang§§, Yoshihide Wada§§§, Dominik Wissera, Torsten Albrecht*, Katja Frieler*, Franziska Piontek*, Lila Warszawski*, and Pavel Kabat¶¶



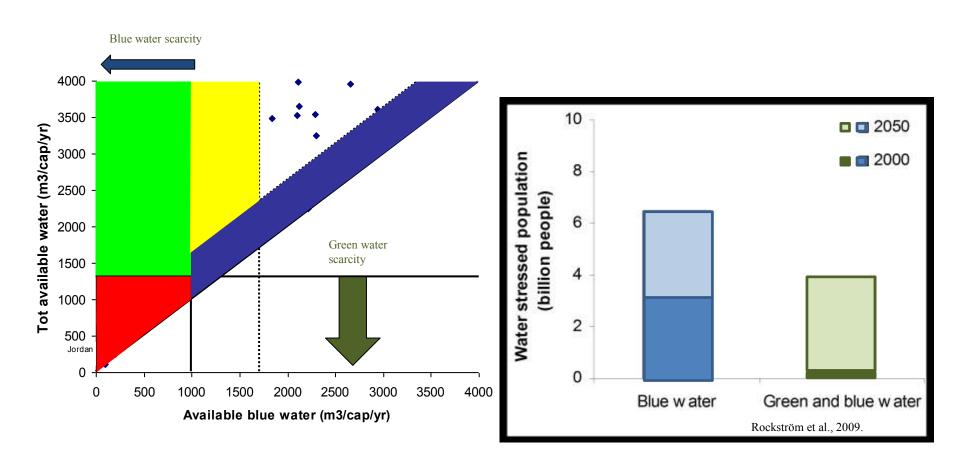

Humanity at a critical water junctre

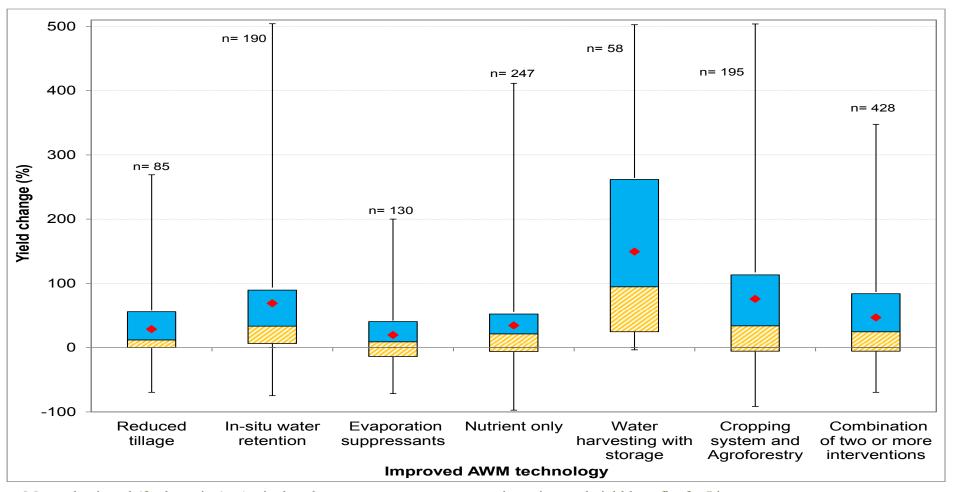

Green water provides (the only?) path forward

The issues: Pressures for green water management



Fundamental changes in global water appropriation




Green water management sustaining food, fodder and fibre production

Green water management real opportunity

We know how to explore green water to close yield gaps

Magombeyi et al (forthcoming) : Agricultural water management systematic review and yield benefits for Limpopo

Green Water

The Black Elephant of the SDGs

COMMENT

leaders emphasize emotional intelligence a 286 PLANTS A symbiotic story of seeds and civilization p.288 THEATRE The toll and the triumph of a life with OCD takes centre stage p.289 laser co-inventor, remembered a 292

Terraced fields in the Simien Mountains, Ethiopia, help to conserve soil moisture.

Increase water harvesting in Africa

Meeting global food needs requires strategies for storing rainwater and retaining soil moisture to bridge dry spells, urge Johan Rockström and Malin Falkenmark.

Concerned Scientists and Experts Declaration on Water, Hunger and Sustainable Development Goals

Managing rain: the key to eradicating poverty and hunger

We scientists and experts, joining the 2014 World Water Week in Stockholm, are deeply concerned that sustainable management of rainwater in dry and vulnerable regions is missing in the goals and targets proposed by the UN Open Working Group (OWG) on Sustainable Development Goals (SDGs) on Poverty (Goal 1), Hunger (Goal 2) and Freshwater (Goal 6).

We commend the OWG for setting ambitious and aspirational global development goals of eradicating poverty and hunger and promoting equity, ensuring peace and transparent global governance, within the context of global sustainability for climate, oceans, and ecosystems.

Our concern arises from the failure to recognize the ominous congruence between, on the one hand, poverty, malnutrition, rapid population growth and economic reliance on agriculture, and the water challenges and predicament in semiarid tropical and subtropical climates on the other. These drylands are the most water vulnerable inhabited regions of the world, hosting the world's poorest countries.

This is a challenge of global importance. Drylands cover 41 percent of the world's land surface, host 44 percent of the world cultivated systems and are home to 2.1 billion people in nations with the world's highest population growth rates. Here, food production and human livelihoods rely on limited, highly variable, unreliable and unpredictable rain. When it rains, it often pours in intense convective storms that generate flash floods with eroding surface runoff, making fruitful rainfed agriculture and traditional irrigation extremely challenging. However, even in these areas there is generally enough rainfall and thus potential to drastically improve food production, if only we can guide more of the water to beneficial, productive uses.

By 2050, business-as-usual will mean 2 billion smallholder farmers, key managers and users of rainwater, eking out a living at the mercy of rainfall that is even less reliable than today due to climate change. Setting out to eradicate global poverty and hunger without addressing the productivity of rain is a serious and unacceptable omission. The proposed SDGs cannot be achieved without a strong focus on sustainable management of rainwater for resilient food production in tropical and subtropical drylands.

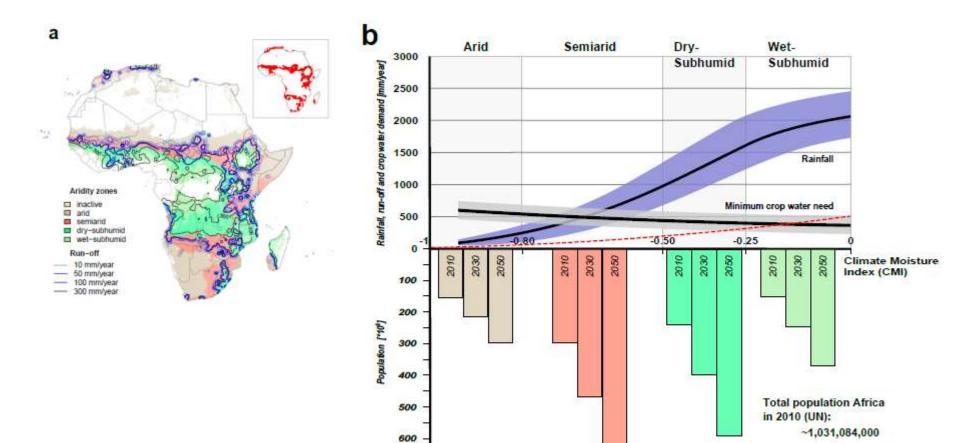
Sustainable development for the poorest dryland farmers depends on the ability to build resilience and raise agricultural production within the capacity of local and severely underutilised rainwater. Management practices and techniques, such as rainwater storage, efficient supplementary irrigation, and integrated management of water, land, crops and nutrients, can provide significant productivity gains and sustainable intensification of smallholder agriculture for livelihood improvements, community development and food security. This could also open the possibility for investments, stimulating further agricultural development, benefitting from experiences in mid- and high-income countries.

We therefore call upon the United Nations General Assembly to add in any Hunger Goal a target on sustainable and resilient rainwater management for improved food production, through the adoption of sustainable watershed management practices at all scales aiming for an increase of over 50% in the yield of food per unit of rainwater.

Stockholm 31 August 2014,

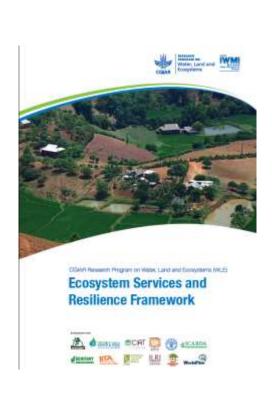
Julia Marton-Lefèvre, IUCN

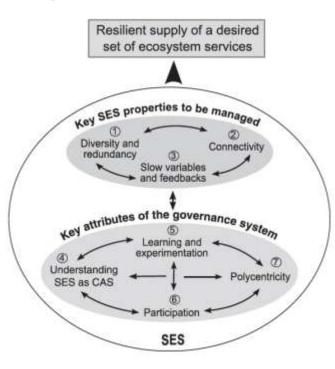
Malin Falkenmark, SIWI Johan Rockström, SRC Torgny Holmgren, SIWI

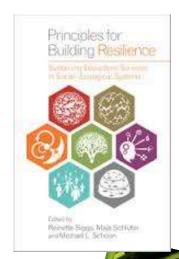

Mohamed Ait Kadi, GWP Tony Allan, King's College Naty Barak, NETAFIM

Jeremy Bird, IWMI Fred Boltz, Rockefeller Foundation Peter Gleick, Pacific Institute

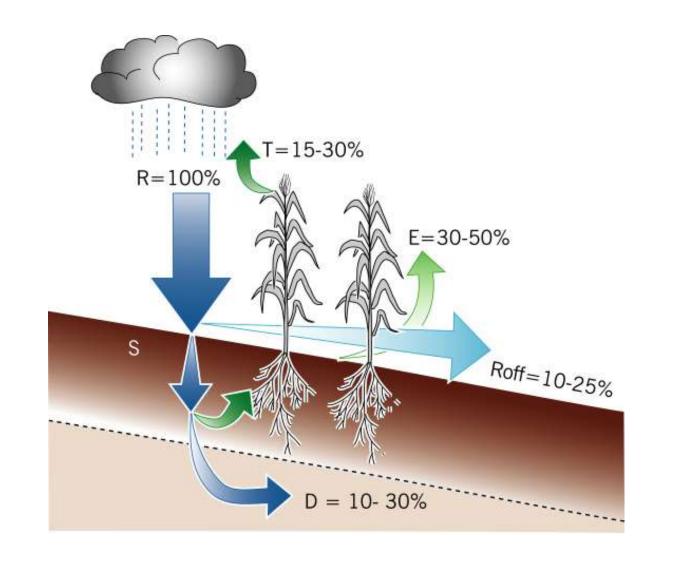
David Grey, University of Oxford Rio de Janeiro Roberto Lenton, University of Nebraska


Lisa Sennerby Forsse, SLU

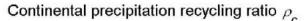

The Grand African Predicament

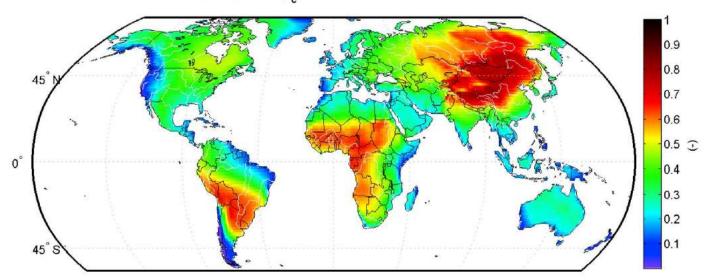


700


Green water management in the context of sustainable intensification and building water resilience

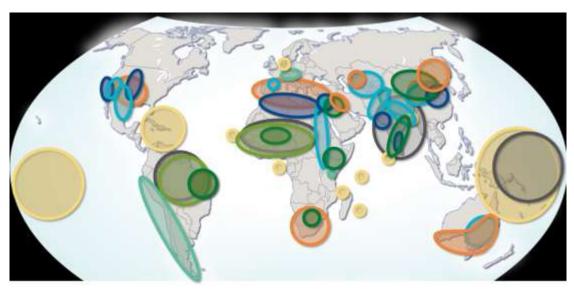
Green Water Solutions

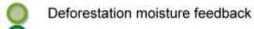


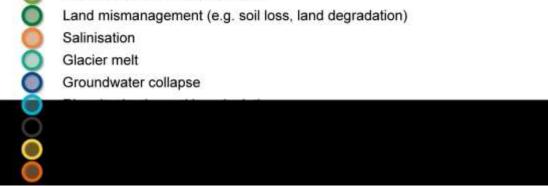

Rainfall dependent on moisture feedback from functioning forest landscapes

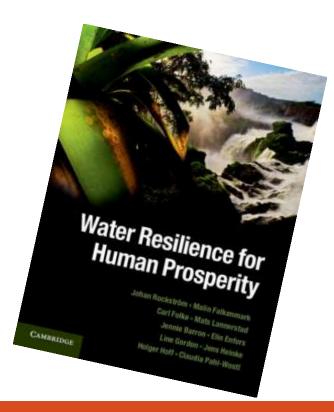
W09525

VAN DER ENT ET AL.: ORIGIN AND FATE OF ATMOSPHERIC MOISTURE


W09525




Figure 3. Average continental precipitation recycling ratio ρ_c (1999–2008).


Water related Tipping Elements in the Earth system

Water related possible tipping points

Building on adaptive Innovation

A triply green approach to sustainable intensification

Rainwater harvesting

IWRM discourse advancing to explicitly include green water management

Dominating pre-1990s

Blue water - sector approach

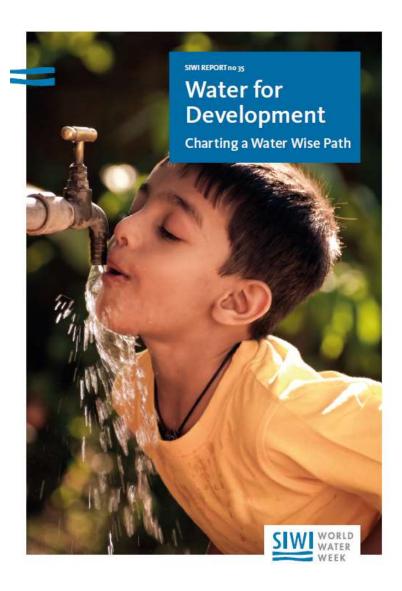
Economic and engineering approach to freshwater, water supply

Established 1990s

Integrated blue water - IWRM

Economic
approach to
freshwater,
including
environmental
water flows

Starting 2000s


Integrated green and blue water - ILWRM

IWRM adding land interactions, i.e. green water resources for food and ecosystem services

Green and blue water with social-ecological interactions and global change - Resilience based ILWRM

ILWRM with
resilience
addressing: the
need to sustain
rainfall, cross-scale
interactions and
feedbacks

Implications for the SDGs?

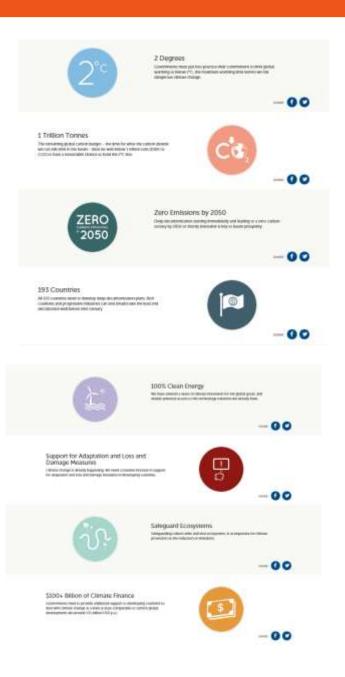
Chapter 13

Double water blindness delaying sub-Saharan green revolution

By Malin Falkenmark and Johan Rockström

Chapter 7

Healthy freshwater ecosystems: an imperative for human development and resilience


Frederick Boltz, Alex Martinez, Casey Brown and Johan Rockström

From MDGs to SDGs

GOAL 1	End poverty in all its forms everywhere	
GOAL 2	End hunger, achieve food security and improved nutrition and promote sustainable agriculture	
GOAL 3	Ensure healthy lives and promote well-being for all at all ages	
GOAL 4	Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all	
GOAL 5	Achieve gender equality and empower all women and girls	
GOAL 6	Ensure availability and sustainable management of water and sanitation for all	
GOAL7	Ensure access to affordable, reliable, sustainable and modern energy for all	
GOAL8	Promote sustained, inclusive and sustainable eco- nomic growth, full and productive employment and decent work for all	
GOAL 9	Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation	
GOAL 10	Reduce inequality within and among countries	
GOAL 11	Make cities and human settlements inclusive, safe, resilient and sustainable	
GOAL 12	Ensure sustainable consumption and production patterns	
GOAL 13	Take urgent action to combat climate change and its impacts	
GOAL 14	Conserve and sustainably use the oceans, seas and marine resources for sustainable development	
GOAL 15	Protect, restore and promote sustainable use of terrestial ecosystems, sustainably manage forests, combat destertification, and halt and reverse land degradation and halt biodiversity loss	
GOAL 16	Promote peaceful and in clusive societies for sustain ble development, provide access to justice for all an build effective, accountable and inclusive institution at all levels	
GOAL 17	Strenghten the means of implementation and revitalize the global partnership for sustainable development	

Sustainable Development Goals for People and Planet

The Earth Statement

8 Essential Elements for a Successful Paris Deal

