Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

[©] The authors, all rights reserved

SEMI-DECENTRALIZED, MODULAR WASTEWATER TREATMENT CONCEPT FOR FAST GROWING CITIES

Dr. Ursula Schließmann, Fraunhofer IGB

Co-authors: Dr. Marius Mohr (Fraunhofer IGB), Dr. Liangfei Dong (Changzhou University)

World Water Week, August 23rd 2015

Fraunhofer

- Fraunhofer-Gesellschaft: applied research of direct utility to private and public enterprises - benefit to society
- Non-profit organization
- Largest organization for applied research in Europe
- International collaboration through representative offices in Europe, the US, Asia, and the Middle East

Urbanization in China

China's Urban and Rural Population, 1950-2030

Water management in China

- Uneven distribution:
 - Northern China: About 20% of water resources for 46% of the population
 - Southern China: About 80% of water resources for 54% of the population, only 35% of China's total arable land
- 12th Five Year Plan (2011-2015)
 - At least 95% connected to water supply in urban areas
 - 85% of total wastewater generated in urban areas should be treated, and 20% of the treated wastewater should be reused
 - Increase sections with good water quality (grade I III) for major rivers and lakes by 60%

Water management in China

- Action Plan for Water Pollution Prevention (published by The State Council of the People's Republic of China on 2nd April 2015)
 - End of 2020: all urban wastewater treatment facilities reach discharge quality according to national discharge/ reuse standards
 - 2020: wastewater treatment ratio in counties and cities reaches 85% and 95% respectively, capitals should reach 100 % by 2017

Water management in China

National Urban Water Supply and Wastewater Capital Expenditure 2011 to 2018 Forecast

Source: Global Water Intelligence (does not include the MWR and provincial water resources as well as the flood protection investment programme of EUR 40 billion per year)

Examples from China

WWTP with a capacity of 10,000 m³/d, 15 km from center of development area, not operating semi-decentralized WWTP with a capacity of 400 m³/d, operating since 2013

Transfer of solutions?

- Conventional "western" solutions not always adequate for Chinese conditions
- Recycling-oriented concepts have been developed, but hardly implemented in Europe
- Examples:
 - DEUS 21, demonstrated since 2006 in Knittlingen (Germany), 300 p.e.
 - Hamburg Water Cycle, Jenfelder Au, 2,000 p.e., under construction (www.hamburgwatercycle.de)
 - Semizentral, TU Darmstadt, implementation in Qingdao (China), designed for 12,000 p.e., in operation since 2014 (www.semizentral.de)

DEUS 21 – Decentralized urban water infrastructure systems

Saving water, utilizing resources

- Utilization of resources in wastewater: Water, energy, nutrients
- Rain water harvesting
- Intelligent collection of wastewater (vacuum sewer system)
- Anaerobic wastewater treatment
- Reuse of treated water and nutrients
- Development area in Knittlingen: 100 plots

Funding

BMBF, period: 10/2003 – 05/2010

Partner: Fraunhofer ISI; EnBW Energie Baden-Württemberg AG, Eisenmann AG, GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG, Gebr. Bellmer GmbH Maschinenfabrik, Kerafol GmbH, Roediger Vacuum GmbH, Stadt Knittlingen, ISA der RWTH Aachen (in first phase).

Decentral urban water infrastructure in Knittlingen

Demonstration project in development area: 105 plots

Innovations:

- Utilization of rainwater
- Vacuum sewer system
- Wastewater treatment: anaerobic membrane bioreactor

Transfer – framework conditions

- What is worth recycling (water, nutrients, energy)?
- Climate: water scarcity? Demand for heat or cold? Seasonal differences?
- Characteristics of development area, existing infrastructure, and economic parameters determine scale
- Legal situation: what substances have to be removed before recycling or discharge?
- Cultural issues: is reuse of wastewater accepted? For what purposes?
- Local partners are crucial

Concept A: Stormwater separated

Concept B: Source separation in household

Comparison

Concept A

- Less complex, suitable for existing houses as well
- All nutrients are removed, treated water can be reused for irrigation or discharged
- Maximum heat recovery after biological treatment

 Combination of concepts possible, modular setup

Concept B

- Necessary volume for biological processes ca. 40% lower, if concentrated nutrients in treated blackwater can be used with water
- 20 % more biogas, as no denitrification of blackwater is necessary
- Greywater for flushing toilets, drinking water consumption reduced by 1/3
- Urine separation an option when suitable toilets are on the market

Summary and Outlook

New solutions for rapidly growing cities needed

- Modular fit-for-purpose concepts for integration of water, energy, and food production
- Implementation based on demand
- Lighthouse projects for cities in developing countries as blueprints for sustainable development, cities as "real labs"
- Technology transfer and adaptation, e.g.: vacuum sewer system, disinfection of wastewater, efficient anaerobic processes, irrigation technologies
- How can this be organized efficiently?
- What can be the input from research organizations?
- How will these lighthouse projects be financed?

Thank you for your attention! ursula.schliessmann@igb.fraunhofer.de

