Presentation from 2015 World Water Week in Stockholm

www.worldwaterweek.org

© The authors, all rights reserved

The Nile Basin Decision Support System

Keynote at the workshop on Information Technologies for a Smarter Water Future

Abdulkarim Seid NBI Secretariat Stockholm, 25 Aug 2015

The Nile Basin Decision Support System

Developed during 2007 – 2012

The Nile Basin Decision Support System is a water resources Modeling and decision making software framework that offers:

- Tools for storage, processing, interpretation and visualization of water and related data
- Suite of models for simulating river-lake reservoir systems
- Toolset for analyses of water resources problems, evaluate alternative scenarios
- Suite of tools for generating information needed for decision making
- Toolsets for collaborative decision making in water resources

The Vision of the Nile Basin DSS (2001)

Nile Basin DSS has been envisaged to be a common, computer-based platform for communication, information management, and analysis of Nile Basin water resources.

Coupled with human resources development and institutional strengthening, it will provide a framework for sharing knowledge, understanding river system behavior, evaluating alternative development and management schemes, and supporting informed decision making from a regional perspective

Policy and Strategy Level

- Provide the Knowledgebase
- Serve as informed basis for policy and strategic analyses and dialogues
- A platform for communication to facilitate the joint identification of development strategies
- Rational support for decision making

Planning and Management Level: to support

- Identification of cooperative projects that provide mutual benefits
- Evaluation of impacts/benefits of alternative plans
- Assessments of trade-offs and investment sequencing
- Trend analysis and forecasts of the development of hot-spots,
- Provide Baseline data and support for environmental management.

- Nile Basin DSS is a collaborative effort involving:
 - Core team: over 40 experts from Nile Basin riparian countries
 - Senior water resources experts from Nile Basin riparian countries (steering committee, regional DSS network, NBI staff)
 - National DSS networks: more than 100 multi-disciplinary experts (involved in national applications and testing)
 - three major consultancies: development of tool; testing and application of the tool
 - World renowned experts (Panel of Experts) and technical advisors

Setting the Expectations right the NB-DSS

- 1. The DSS: as a communication tool ... enabling countries dialogue about the status, future of their WR ... creating a common knowledge base
- 2. The DSS: as a confidence building tool ... making all data and information transparent and accessible.... emergence of epistemic community
- 3. The DSS: as an envisioning tool -- enabling countries to imagine their common future on the basis of different scenarios about the state of their most precious common asset Nile waters
- 4. The DSS: as a counseling tool -- bringing science closer to the political process -- informing national interests with facts;
- 5. The DSS: a cultural tool -- reasoned debates; informed disagreements; options generation... expanding the range of choices and possibilities

CARLO EL GARAGO

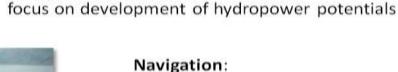
The DSS designed to support water resources planning and management decision making in the focus areas

Water resources development:

Focus on infrastructure (e.g. new dams)

Coping with floods:

focus on flood protection and impacts


Optimal water resources utilization:

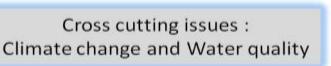
Focus on optimal use (e.g. reservoir operation rules)

Rain-fed and irrigated agriculture:

focuses on crop-production and irrigation

Energy development (hydropower):

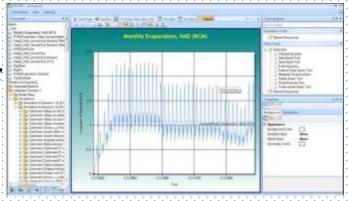
Coping with droughts:

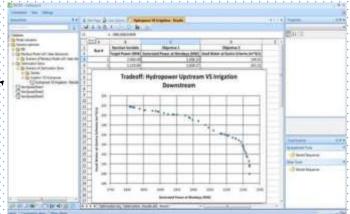

Focus on drought management

Focus on impacts on river navigation

Watershed and Sediment Management:

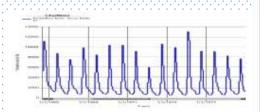
Focus on land-use, soil erosion, sediment loads

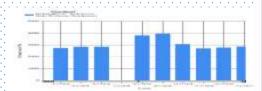


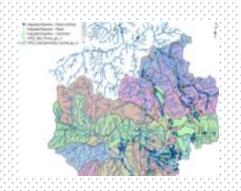


design details... is there a limit?

- Data/information management system: Time Series analysis toolkit; Basic GIS functionality; Integrated database; Ensemble generator (for probabilistic analysis);
- Modeling System (suite of modeling tools): Water balance and allocation model; Rainfall-runoff modeling tools; Hydrodynamic modeling; Soil erosion process model; Crop water requirement; Model linking/nesting tool
- Decision making/Analysis tools:
 Scenario management (including indicator calculation); Multi-objective optimization;
 Economic analysis tools; Multi-criteria analysis tool; tradeoff analyses






NB Decision Support System

not just another modeling tool

Basin hydrology and Changes

Environmental, Social Economics Indicators

Environmental indicators

- Footprint Areas
 - -Ecologically Sensitive Areas
 - -Carbon emissions
 - -Fisheries Production
- Downstream Areas:
 - -Floodplain/Wetland Area Inundated
 - -Biological Production
 - -Abundance of Pest Black flies
 - -Bank Stability
 - -Recovery Distance
 - -Seasonal Shift

· Water Quality

- -Phytoplankton Growth Potential
- -Aquatic Macrophytes Growth Potential

Food security and Livelihoods:

Impact on Recession agriculture; Fish Productivity;

Displacement

Multi-Criteria Decision Matrix, tradeoffs, etc

Score	Criterial	Criteria2	Overall	
			Score	Rink
C1.1 Baseline	0.055	0.254	6.909	- 1
SC.L.2 Naseline CC 90 ft OW.	0.633	0.220	0.854	4
SC.E.4 Baselitm_CCE30_ Down	0.963	0.211	0.903	2
Sc.1.3 Supeline CC 120	0.667	0.313	1.000	- 1
SCA_3 Saletine_CC_80_H SW		100	0.000	

Process is vs. the end product ... striking the balance

Needs Assessment and Conceptual Design

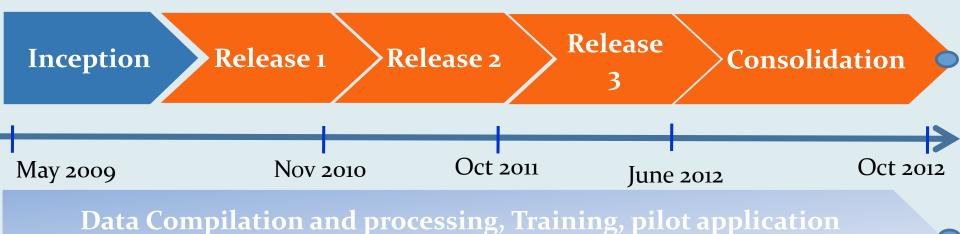
DSS Needs Assessment

• Priority focus areas agreed

Conceptual Design

Key components of DSS and their features identified

DSS development plan


- Terms of reference
- Development schedule and budget

Jul 2007

Jun 2008

PSC Approval

Detailed design, development, testing, training, application

(national/regional)

Softwere development prod

Development in 3 cycles

Requirements & Release Plan

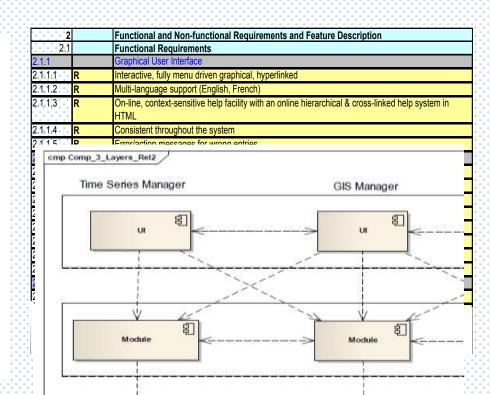
Design

Developmen t & Testing

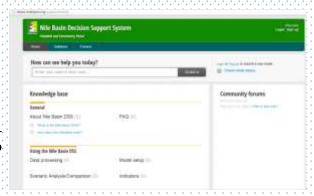
Delivery &
Acceptance
Testing
(Client)

Core team inputs

Core team Inputs; Approval

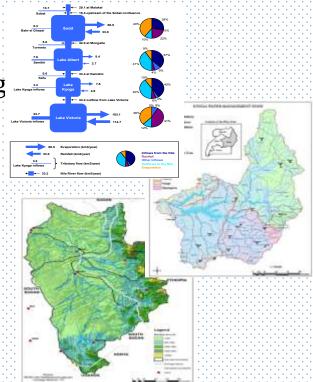

- DSS features described by a list of User Requirements
- These requirements are analyzed and elaborated further together with the client
- Requirements linked to software components
- Design reviewed and approved by client

Client monitors



Client responsible

- Support decision making: respond to the needs of decision makers in addressing key water management challenges. *It should make a difference!*
- Software needs to be maintained to support its continued use: new operating platforms; Maintenance and support arrangements are vital!


- Expandable/open software architecture: to meet emerging user requirements,
- Continuous user support: Training –
 Training Training; community of practice

Use of the DSS in real life ... what do we learn

- DSS licenses distributed to NBI countries
- A few real-life applications of the DSS: modeling framework for NEL region multi-sector investment plan development
- Uganda: Awoja catchment management plan development
- Currently: use in development of integrated water resources management and development plan for the Baro-Akobo-Sobat basin; strategic analyses of water resources issues by Nile-SEC

- Persistent efforts needed to champion the tool, demonstrate its use,
- Having a good tool is not enough! continuously provide user support
 → need to have a dedicated user support team (Nile-SEC)
- Success not guaranteed → get ready for occasional disappointments
- Improve data, tools and be open to respond to emerging user needs

 the software as a living organism that must be nurtured to keep it alive

THE STORES OF THE BUILD R

- The Nile Basin Decision Support System is a comprehensive analytic framework jointly developed by the Nile riparian countries
- It comprises of software toolsets for information management, modeling and decision making
- A number of DSS applications demonstrated its usefulness
- The software system enjoys a multi-year maintenance and support arrangement
- It has undergone a number of upgrades since it was first delivered in
 2012
- A nascent team of DSS users created in NBI countries
- Continuous user support and maintenance of the software system is equally important as the original development of the tool
- Current efforts of Nile-SEC focus on expanding the DSS user circle through:
 - DSS web-service
 - Possibly, Mobile Apps for accessing data and analyses results ..