"M.B.T-3"

real-time computerized system for optimal operation of large-scale water supply networks

Presenting: Ram Aviram, BIT-Consultancy

MEKOROT, National Water Company of Israel: Dr. Dani Cohen, David Wizental , Alexander Dombe, Yuri Kasperuk

treated wastewater as a major source for irrigation

Total 410 MCM/Y

2014

the supply system of treated waste water SHAFDAN – NEGEV 3rd line

Supply network

6 infiltration fields

secondary treatment - 130 MCM/Y effluent

Impermeable

♦ 170 MCM annual supply ***150** wells ***** 52 pumping stations **♦**7 faucets *8 connections to potable water ***19** reservoirs **5** seasonal reservoirs 14 operational reservoirs ***602** supply connections *100 km by 100 km geographical spread

Energy consumption 200 Mkwh Annual pumping cost 19 million US\$

The complexity of the operation

seasonal reservoirs

- Is the maximum filling required?
- Which is the preferred season of filling?
- What is the rate of depletion?
- Electricity cost variables?

Production wells supply

> a constant flow rate?

> division between well?

hydrological constraints?

Different water quality?

Evaporation and seepage losses?

Control and management

- > 15 operation regions
- 4 Control centers managed by 2 distinct districts

The challenges

- reduction of energy cost
- reduction of used quantities of potable water
- increasing reliability of supply
- the most efficient use of production wells

developing the system

MEKOROT - internal process

- Use of existing component
- "Agile development methodology"
- > dynamically and adaptively
- > tight connection between developers and users
- > all partners were defined as "a joined team"

Agile Umbrella

Crystal

Scrum

Kanba

Agile

XP

EDD

DSDM

M.B.T. 3

The heart of the system

- > a large scale optimization system "Almog"
- dual objective functions:
 - minimum energy costs
 - * minimum use of potable water
- 177,000 decision variables
- > 77,000 constraints

The system functions

> dynamically collects measurements from all the plants

- Forecast hourly demands at each operational region: 168 hours and one year ahead
- > defines the optimal planned operation of each plant
- > gives operational instruction

on line aggregative state display

מערכת הגדרות צריכות תוצאות תכנון מפורטות פעולות יזומות היסטוריה צאט מקרא

מ.ב.ת שלישי 💶 🗗 🗙

summary table of on line aggregative state display

parameter	daily	daily aggregated			
	forecast	planned	actual	gaps	
consumption wells potable seasonal res. Operational	608,156	298,398	301,215	1	
	479,999	245,033	204,183	.83	
	47,200	26,752	59,135	2.21	
	107,167	44,883	37,053	.82	
	-22,906	-12,847	1,672	14	

conclusions

M.B.T.-3:

- Savings of 2.5 million US\$ on energy
- Efficient use of production wells
- Efficiency in use of potable water
- Increasing reliability supply
- Coordinating the operation through several control centers.